Phd Defense by Joscelyn Mejias

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday May 8, 2019 - Thursday May 9, 2019
      10:00 am - 11:59 am
  • Location: EBB CHOA Seminar Room
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Nano-In-Micro Multi-Stage Particles for Pulmonary Drug Delivery

Full Summary: No summary paragraph submitted.

Joscelyn C. Mejías

BME PhD Defense Presentation

 

Date: Wednesday May 8th, 2019

Time: 10:00 AM

Location: EBB CHOA Seminar Room

 

Advisor: Krishnendu Roy (Georgia Institute of Technology)

 

Committee Members:

Andrés García, PhD

Manu Platt, PhD

Ravi Kane, PhD

Rabindra Tirouvanzium, PhD

 

 

Title: Nano-In-Micro Multi-Stage Particles for Pulmonary Drug Delivery

 

 

Summary/Abstract:

Pulmonary drug delivery is a non-invasive method for targeted delivery of therapeutics for the treatment of respiratory diseases such as asthma, idiopathic pulmonary fibrosis, or cystic fibrosis. Although the lung appears to be an “easy” target for site-specific gene therapy, there are several physiologic barriers hindering its effectiveness. For particle deposition in respiratory airways, the aerodynamic diameter of particles should fall between 0.5-5 µm, however, alveolar macrophages rapidly clear particles within this geometric range. Additionally, nano-scale particles are required for efficient transport through the pulmonary mucosa and to facilitate efficient endocytosis for intracellularly targeting therapeutics. These design parameters suggest a two-stage system is necessary for efficient therapeutic delivery; a microparticle for aerodynamic properties and a nanoparticle for drug delivery.

A nanoparticle-inside-microgel multi-stage formulation could provide efficient, intracellular, delivery of nanoparticles to target cells of interest. The microgel carriers are designed for (a) protease-triggered release of drug loaded nanoparticles, (b) avoiding rapid clearance by alveolar macrophages, and (c) appropriate aerodynamic properties, while the nanoparticles are designed to (a) carry small hydrophobic molecules. The overall objective is to test this delivery system by investigating (i) how the microgels and nanoparticles interact with the phagocytic immune cells in vitro (Aim 1) and in vivo (Aim 2) and (ii) how we can recapitulate the vascular pulmonary environment to study these interactions in an in vitro setting (Aim 3).

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 25, 2019 - 12:24pm
  • Last Updated: Apr 25, 2019 - 12:24pm