*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Marissa Ruehle
Biomedical Engineering Ph.D. Thesis Defense
Date: Monday, May 6, 2019
Time: 10:00 am
Location: CHOA Seminar Room, EBB 1005
Advisors:
Robert E. Guldberg, PhD
Nick J. Willett, PhD
Committee Members:
Joel D. Boerckel, PhD
Andrés J. García, PhD
James B. Hoying, PhD
Rebecca D. Levit, MD
Title: Cell-Based Vascular Therapeutics for Bone Regeneration
Abstract:
First, we evaluated the effect of multicellular microvascular fragments (MVF) co-delivered with BMP-2 to a model of composite bone-muscle trauma using collagen sponge, the clinically available BMP-2 delivery vehicle. MVF did not improve bone healing as hypothesized; however, we also investigated the effect of a modestly increased BMP-2 dose, which did significantly improve functional healing. While MVF maintained viability within the collagen sponge in vitro, they first dissociated to single cells, which we speculated may have prevented their inosculation with the host vasculature. Next, we developed and characterized decorin-supplemented collagen gels for use as both an in vivo co-delivery vehicle for MVF and BMP-2 and as a dimensionally stable biomaterial scaffold to investigate the effects of compressive loading on MVF growth in vitro. Despite in vitro results demonstrating synergistic effects of BMP-2 and MVF, there was no effect of MVF on bone healing, and MVF significantly decreased early revascularization following injury. However, the addition of decorin increased the compressive properties and dimensional stability of collagen while still supporting robust in vitro MVF growth.
We then evaluated the effects of dynamic compressive loading on MVF growth. While the vasculature has long been recognized as mechanosensitive, the effects of abluminal forces experienced by healing tissues on angiogenesis are poorly understood. We demonstrated that delayed compressive loading led to longer, more extensively branched microvascular networks than early loading at all strain magnitudes tested. Across strain magnitudes, delayed loading increased vascular network length and branching compared to non-loaded controls; however, early high strain loading inhibited network formation. Gene expression analysis revealed differential mechanoregulation of gene expression profiles by early vs. delayed loading. Genes associated with angiogenic sprout tip cells were downregulated by early loading and upregulated by delayed loading. Delayed loading also led to the upregulation of genes involved in cell adhesion and migration. Using a pharmacological inhibitor, we established that the YAP mechanotrasduction pathway is involved in the pro-angiogenic response to delayed loading.
Overall, this thesis has tested MVF as a therapeutic for bone healing, developed and characterized a novel biomaterial for in vitro and in vivo applications, and increased fundamental knowledge about the effects of bulk loading on neovascularization. These findings can be leveraged to more effectively treat composite bone-muscle defects, both through future tissue engineering work and with physical rehabilitation regimens informed by knowledge of loading effects on nascent vasculature.