Phd Defense by German Capuano

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday April 25, 2019 - Friday April 26, 2019
      11:00 am - 12:59 pm
  • Location: Montgomery Knight Building 325
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Smart finite elements: An application of machine learning to reduced-order modeling of multi-scale problems

Full Summary: No summary paragraph submitted.

German Capuano
(Advisor: Julian J. Rimoli)

will defend a doctoral thesis entitled,

Smart finite elements: An application of machine learning to reduced-order modeling of multi-scale problems

On

Thursday, April 25 at 11:00 a.m.
Montgomery Knight Building 325

 

Abstract

To design structures using state-of-the-art materials like composites and metamaterials, we need predictive tools that are capable of taking into account the phenomena occurring at different length scales. However, the upscaling of nonlinear mesoscale behavior to perform system-level predictions is intractable when using conventional modeling techniques. Other methods like multiscale finite elements are capable of solving arbitrary problems, but they tend to be computationally expensive because they rely on detailed models of the element's internal displacement field. We propose a method that utilizes machine learning to generate a direct relationship between the element's state and its forces, skipping altogether the complex and unnecessary task of finding its internal displacements. To generate our model, we choose an existing finite element formulation, extract data from an instance of that element, and feed that data to the machine learning algorithm. The result is an approximated model of the element that can be used in the same context. Unlike most data-driven techniques applied to individual elements, our method is not tied to any particular machine learning algorithm, and it does not impose any restriction on the solver of choice. In addition, we guarantee that our elements are physically accurate by enforcing frame indifference and conservation of linear and angular momentum. Our results indicate that this can considerably reduce the error of the method and the computational cost of producing and solving the model.

 

Committee

  • Prof. Julian J. Rimoli – School of Aerospace Engineering (advisor)
  • Prof. Massimo Ruzzene – School of Aerospace Engineering
  • Prof. Claudio Vinicius Di Leo – School of Aerospace Engineering
  • Prof. Evangelos Theodorou – School of Aerospace Engineering
  • Prof. Arash Yavari – School of Civil and Environmental Engineering

 

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 19, 2019 - 9:20am
  • Last Updated: Apr 19, 2019 - 9:20am