*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING
GEORGIA INSTITUTE OF TECHNOLOGY
Under the provisions of the regulations for the degree
MASTER OF SCIENCE
on Friday, April 19, 2019
3:30 PM
in Love 295
will be held the
MASTER’S THESIS DEFENSE
for
Jinho Hah
“Encapsulation and Design of Scalable Packaging Materials for Thin Film Perovskite Solar Cell Application”
Committee Members:
Prof. C. P. Wong, Advisor, MSE
Prof. Meilin Liu, MSE
Prof. Samuel Graham, ME
Abstract:
There have been many attempts to improve the stability of the environmentally-sensitive perovskite solar cells (PSCs) from adverse environments. The next generation encapsulation method should be compatible with roll-to-roll (R2R) processing, which can manufacture thin-film PSC modules at large scale and make solar electricity economically competitive with conventional electricity generation. This work investigates the interface chemistry between the polymer backsheet and the polymer encapsulants to understand the moisture, thermal, and UV stability of the packaging materials for PSCs. First, surface modification on the commercially available PET backsheets was done using various types of silane-based coupling agents, and their adhesion profiles were studied upon damp-heat exposure on these samples. Second, thorough XPS analysis was conducted on the delaminated PET surface from the PET/EVA/PET encapsulation architecture upon the UV, thermal, and moisture aging to understand the degradation mechanism at the interface. Moreover, this work also includes encapsulant design by combining the polymer blends to improve the mechanical and chemical bulk properties of a PV encapsulant. In short, this work serves to investigate on the encapsulation methods to improve the reliability and lifetime of PSCs.