PhD Defense by Christopher Perini

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday March 20, 2019 - Thursday March 21, 2019
      1:00 pm - 2:59 pm
  • Location: Marcus 1117
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Impact of As-synthesized and Radiation-induced Defects in Two-dimensional Vertical Heterostructures

Full Summary: No summary paragraph submitted.

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

DOCTOR OF PHILOSOPHY

on Wednesday, March 20, 2019

1:00 PM
in Marcus 1117

 

will be held the

 

DISSERTATION DEFENSE

for

 

Christopher Perini

 

"Impact of As-synthesized and Radiation-induced Defects in Two-dimensional Vertical Heterostructures"

 

Committee Members:

 

Prof. Eric Vogel, Advisor, MSE

Prof. Ilan Stern, GTRI

Prof. Mark Losego, MSE

Prof. Faisal Alamgir, MSE

Prof. William Alan Doolittle, ECE

 

Abstract:

 

In recent years, transition metal dichalcogenides (TMDs) have shown promise as a next generation class of semiconducting two-dimensional materials for use in electronic devices. Due to their low dimensionality, TMDs are appealing materials for a variety of applications, including flexible electronics, digital and analogue electronics, optoelectronic uses, and sensors. The absence of out-of-plane dangling bonds in 2D materials enables the potential for arbitrary stacks of 2D layers, yielding a 2D vertical heterostructure. The stacking arrangement of 2D layers in these heterostructures can be tailored to yield a number of different device characteristics, from steep slope tunnel transistors to resonant tunnel junctions. However, the majority of studies that explore TMDs for various applications obtain films using methods that are not scalable, such as mechanical exfoliation or synthesis at high temperatures (T > 450 oC). In order for TMDs to be integrated into industrial back-end-of-line (BEOL) processes, films must be able to be synthesized using conditions that are compatible with complementary metal oxide semiconductor (CMOS) BEOL process limitations, namely low synthesis temperature.

 

To achieve compatibility with BEOL limitations, this work demonstrates low temperature synthesis of TMDs utilizing plasma-assisted synthesis techniques. Physical characterization yields information on the stoichiometry, crystallinity, thickness, and electronic structure of the films, while electrical measurements are used to correlate the electronic transport through the films to material quality and defect structure. In particular, the temperature dependence of in and out-of-plane conductivities provide information on conduction mechanisms through the material, as well as injection at the metal/semiconductor interface.

 

TMD films are synthesized on different substrates in order to enable direct layer-by-layer construction of heterostructures, removing the need for transfer processes that introduce contamination at the interfaces between layers. MoS2/high-k dielectric/MoS2 and MoS2/WS2 heterostructures are constructed from low temperature synthesized films, and metal/MoS2/metal heterostructures are constructed from both low and high temperature synthesized films; all of which are used to investigate tunneling and injection mechanisms, rectification, pinning effects, and switching behavior. Certain heterostructures are exposed to ionizing radiation to induce various defects into the different heterostructure layers, so that individual defect types can be correlated to changes in resulting device behavior. Hydrogen impurities and oxygen complexes at the 2D/oxide interface are found to dope and degrade device performance, and passivated oxygen vacancies in the high-k dielectric interlayer can contribute to trap-assisted tunneling across the tunnel junction.

 

The work presented in this thesis establishes a basis for low-temperature synthesis of TMDs and demonstrates methods for how restrictions on synthesis conditions can be overcome. An understanding of how defects and material quality influence resulting device performance was performed through a combination of physical characterization and device characteristics. In addition, the interaction between the TMD and metal contacts is explored in the context of Fermi level pinning. In summary, this work demonstrates low temperature synthesis of TMDs, providing a path for 2D heterostructure implementation into BEOL processes, and explores the implications of resulting material quality and defect structure on heterostructure device performance.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Mar 5, 2019 - 3:40pm
  • Last Updated: Mar 5, 2019 - 3:40pm