*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Specification Composition and Controller Synthesis for Robotic Systems
Committee:
Dr. Magnus Egerstedt, ECE, Chair , Advisor
Dr. Sam Coogan, ECE
Dr. Seth Hutchinson, ECE
Dr. Jonathan Rogers, AE
Dr. Jorge Cortes, UCSD
Abstract:
From precision agriculture to autonomous-transportation systems, robotic systems have been proposed to accomplish a number of tasks. However, these systems typically require satisfaction of multiple constraints, such as safety or connectivity maintenance, while completing their primary objectives. The objective of this thesis is to endow robotic systems with a Boolean-composition and controller-synthesis framework for specifications of objectives and constraints. Barrier functions represent one method to enforce such constraints via forward set invariance, and Lyapunov functions offer a similar guarantee for set stability. This thesis focuses on building a system of Boolean logic for barrier and Lyapunov functions by using $\min$ and $\max$ operators. As these objects inherently introduce nonsmoothness, this thesis extends the theory on barrier functions to nonsmooth barrier functions and, subsequently, to controlled systems via control nonsmooth barrier functions. However, synthesizing controllers with respect to a nonsmooth function may create discontinuities; as such, this thesis develops a controller-synthesis framework that, despite creating discontinuities, still produces valid controllers (i.e., ones that satisfy the objectives and constraints). These developments have been successfully applied to a variety of robotic systems, including remotely accessible testbeds, autonomous-transportation scenarios, and leader-follower systems.