PhD Proposal by Katherine Birmingham

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday March 11, 2019
      2:30 pm - 4:30 pm
  • Location: Suddath Seminar Room, IBB
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Engineered microfluidic platforms to enable the interrogation of metastatic extravasation under physiologically relevant hydrodynamic forces

Full Summary: No summary paragraph submitted.

Katherine Birmingham

BioE PhD Proposal Presentation

March 11, 2019, 2:30 PM

Suddath Seminar Room, IBB

 

Advisor:

Dr. Susan Thomas (Georgia Institute of Technology)

 

Committee Members:

Dr. Andrés García (Georgia Institute of Technology)

Dr. Todd Sulchek (Georgia Institute of Technology)

Dr. John McDonald (Georgia Institute of Technology)

Dr. Gregory Lesinski (Emory University)

 

Engineered microfluidic platforms to enable the interrogation of metastatic extravasation under physiologically relevant hydrodynamic forces

 

Over 90% of all cancer-related deaths result from metastasis, a multistep process that occurs in either the lymphatics or in the blood vasculature. During metastasis, cancer cells leave the primary tumor, intravasate into the circulatory or lymphatic system, circulate until they are able to extravasate, and eventually take up residence in a secondary location of the body to form a metastatic tumor. In order to travel to distant sites in the body during the process of metastatic cancer extravasation, circulating tumor cells utilize a highly orchestrated adhesion cascade that begins with rolling adhesion to endothelial cells under a high shear environment. This process is driven by interactions between endothelial-presented selectins and glycan epitopes on selectin ligands present on the circulating cell’s surface. Selectin-selectin ligand interactions between circulating cancer cells and endothelial cells have been implicated in cancer metastasis, however, an outstanding problem in the field is the lack of effective systems to study the role of wall shear stress and cellular molecular profiles in initiating and sustaining increased selectin-ligand interactions, and how this may lead to enhanced metastatic propensity of circulating tumor cells. As such, the overall objective of this proposal is to engineer microfluidic platforms to permit the analysis of selectin-mediated adhesion and interrogation of cellular characteristics underlying selectin-selectin ligand interactions between the endothelium and metastatic cell subpopulations that occur during cancer dissemination in a tumor microenvironment. My central hypothesis is that microfluidic systems can be engineered to mimic the hemodynamic forces of the circulatory system or hydrodynamic forces of the lymphatic system, which can be used to interrogate cellular characteristics associated with adhesion in flow or the effects of altered microenvironments on metastasis.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Feb 26, 2019 - 9:23am
  • Last Updated: Feb 26, 2019 - 9:23am