ISyE Statistics Seminar - Ethan Xingyuan Fang

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday February 28, 2019 - Friday March 1, 2019
      11:00 am - 11:59 am
  • Location: Groseclose Room 402
  • Phone:
  • URL: ISyE Building Complex
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Statistical Modeling and Optimization for Optimal Adaptive Trial Design in Personalized Medicine

Full Summary: Abstract: We provide a new modeling framework and adopt modern optimization tools to attack an important open problem in statistics. In particular, we consider the optimal adaptive trial design problem in personalized medicine. Adaptive enrichment designs involve preplanned rules for modifying enrollment criteria based on accruing data in a randomized trial. We focus on designs where the overall population is partitioned into two predefined subpopulations, e.g., based on a biomarker or risk score measured at baseline for personalized medicine. The goal is to learn which populations benefit from an experimental treatment. Two critical components of adaptive enrichment designs are the decision rule for modifying enrollment, and the multiple testing procedure. We provide a general framework for simultaneously optimizing these components for two-stage, adaptive enrichment designs through Bayesian optimization. We minimize the expected sample size under constraints on power and the familywise Type I error rate. It is computationally infeasible to directly solve this optimization problem due to its nonconvexity and infinite dimensionality. The key to our approach is a novel, discrete representation of this optimization problem as a sparse linear program, which is large-scale but computationally feasible to solve using modern optimization techniques. Applications of our approach produce new, approximately optimal designs. In addition, we shall further discuss several extensions to solve other related statistical problems.

Title:

Statistical Modeling and Optimization for Optimal Adaptive Trial Design in Personalized Medicine

Abstract:

We provide a new modeling framework and adopt modern optimization tools to attack an important open problem in statistics. In particular, we consider the optimal adaptive trial design problem in personalized medicine. Adaptive enrichment designs involve preplanned rules for modifying enrollment criteria based on accruing data in a randomized trial. We focus on designs where the overall population is partitioned into two predefined subpopulations, e.g., based on a biomarker or risk score measured at baseline for personalized medicine. The goal is to learn which populations benefit from an experimental treatment. Two critical components of adaptive enrichment designs are the decision rule for modifying enrollment, and the multiple testing procedure. We provide a general framework for simultaneously optimizing these components for two-stage, adaptive enrichment designs through Bayesian optimization. We minimize the expected sample size under constraints on power and the familywise Type I error rate. It is computationally infeasible to directly solve this optimization problem due to its nonconvexity and infinite dimensionality. The key to our approach is a novel, discrete representation of this optimization problem as a sparse linear program, which is large-scale but computationally feasible to solve using modern optimization techniques. Applications of our approach produce new, approximately optimal designs. In addition, we shall further discuss several extensions to solve other related statistical problems.

Bio: 

Ethan is an assistant professor at Penn State University. Before joining Penn State, he got his PhD from Princeton University in 2016 and his bachelor's degree from the National University of Singapore in 2010. He works on different problems such as statistical learning, high-dimensional inference and adaptive trial design from both statistical and computational perspectives. He won numerous awards in statistics and optimization such as Best Paper Prize for Young Researchers in Continuous Optimization (jointly with Mengdi Wang and Han Liu), ENAR Distinguished Student Paper Prize and IMS Travel Award. 

Additional Information

In Campus Calendar
Yes
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: sbryantturner3
  • Workflow Status: Published
  • Created On: Feb 13, 2019 - 4:36pm
  • Last Updated: Feb 13, 2019 - 4:46pm