*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Efficient and Refinable Attack Investigation
Yang Ji
Ph.D. student in Computer Science
School of Computer Science
College of Computing
Georgia Institute of Technology
Date: Thursday, February 7, 2019
Time: 13:30 - 15:00 (EST)
Location: Klaus 3126
Committee:
Dr. Wenke Lee (Advisor), School of Computer Science, Georgia Institute of Technology
Dr. David Devecsery (Co-advisor), School of Computer Science, Georgia Institute of Technology
Dr. Alessandro Orso, School of Computer Science, Georgia Institute of Technology
Dr. Dongyan Xu, Department of Computer Science, Purdue University
As modern attacks become more stealthy and persistent, detecting or preventing them at their early stages becomes virtually impossible. Instead, an attack investigation or provenance system aims to continuously monitor and log interesting system events with minimal overhead. Later, if the system observes any anomalous behavior, it analyzes the log to identify who initiated the attack and which resources were affected by the attack and then assess and recover from any damage incurred. However, because of a fundamental tradeoff between log granularity and system performance, existing systems typically record system- call events without detailed program-level activities (e.g., memory operation) required for accurately reconstructing attack causality or demand that every monitored program be instrumented to provide program-level information.
In this proposal, I will present my research focusing on addressing this issue. First, I will present a Refinable Attack INvestigation system (RAIN) based on a record-replay technology that records system-call events during runtime and performs instruction-level dynamic information flow tracking (DIFT) during on-demand process replay. Instead of replaying every process with DIFT, RAIN conducts system-call-level reachability analysis to filter out unrelated processes and to minimize the number of processes to be replayed, making inter-process DIFT feasible. Second, I will present a data flow tagging and tracking mechanism, called RTAG, which further enables practical cross-host attack investigations. RTAG allows lazy synchronization between independent and parallel DIFT instances of different hosts, and enables detection of most classes of data-flow related vulnerability including not only traditional DIFT analysis but also memory corruptions and harmful races.