ISyE Statistics Seminar - Yifei Lou

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday February 15, 2019 - Saturday February 16, 2019
      11:00 am - 11:59 am
  • Location: Groseclose 402
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Nonconvex Approaches in Data Science

Full Summary: No summary paragraph submitted.

Nonconvex Approaches in Data Science

Abstract: Although “big data” is ubiquitous in data science, one often faces challenges of “small data,” as the amount of data that can be taken or transmitted is limited by technical or economic constraints. To retrieve useful information from the insufficient amount of data, additional assumptions on the signal of interest are required, e.g. sparsity (having only a few non-zero elements). Conventional methods favor incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent.  I will present two nonconvex approaches: one is the difference of the L1 and L2 norms and the other is the ratio of the two. The difference model works particularly well in the coherent regime, while the ratio is a scale-invariant metric that works better when underlying signals have large fluctuations in non-zero values. Various numerical experiments have demonstrated advantages of the proposed methods over the state-of-the-art. Applications, ranging from super-resolution to low-rank approximation, will be discussed.

 

Bio: Yifei Lou has been an Assistant Professor in the Mathematical Sciences Department, University of Texas Dallas, since 2014. She received her Ph.D. in Applied Math from the University of California Los Angeles (UCLA) in 2010. After graduation, she was a postdoctoral fellow at the School of Electrical and Computer Engineering Georgia Institute of Technology, followed by another postdoc training at the Department of Mathematics, University of California Irvine from 2012-2014. Her research interests include compressive sensing and its applications, image analysis (medical imaging, hyperspectral, imaging through turbulence), and (nonconvex) optimization algorithms.

Additional Information

In Campus Calendar
Yes
Groups

TRIAD , School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Scott Jacobson
  • Workflow Status: Published
  • Created On: Feb 1, 2019 - 12:17pm
  • Last Updated: Feb 13, 2019 - 12:16pm