Thesis Defense :: Drayage Optimization in Truck/Rail Networks

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday September 6, 2006
      2:00 pm - 11:59 pm
  • Location: Room 403, Groseclose Building
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
Barbara Christopher
Industrial and Systems Engineering
Contact Barbara Christopher
404.385.3102
Summaries

Summary Sentence: Thesis Defense :: Drayage Optimization in Truck/Rail Networks

Full Summary: Thesis Defense :: Drayage Optimization in Truck/Rail Networks

Daily drayage operations involve moving loaded or empty equipment between customer locations and rail ramps. Drayage orders are generally pickup and delivery requests with time windows. The repositioning of empty equipment may also be required in order to facilitate loaded movements. The drayage orders are satisfied by a heterogeneous fleet of drivers. Driver routes must satisfy various operational constraints.

In the first part of the dissertation, our goal is to minimize the cost of daily drayage operations in a region on a given day. We present an optimization methodology for finding cost-effective schedules for regional daily drayage operations. The core of the formulation is a set partitioning model whose columns represent routes. Routes are added to the formulation by column generation. We present numerical results for real-world data which demonstrate that our methodology produces low cost solutions in a reasonably short time.

The second part of the dissertation addresses minimizing total empty mileage when driver capacity is not restrictive and new orders are added to the problem in an online fashion. We present a lower bound for the worst case guarantee of any deterministic online algorithm. We develop absolution methodology and provide results for the performance of different scheduling policies and parameters in a simulated environment.

In the third part of the dissertation, we study a system with one rail ramp and one customer location which is served by a single driver. The problem has discrete time periods and at most one new order is released randomly each time period. The objective is to maximize the expected number of orders covered. With this simple problem, we seek to learn more about route planning for a single driver under uncertainty. We prove that carrying out an order if it is ready to be picked up at the driver

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Barbara Christopher
  • Workflow Status: Published
  • Created On: Oct 8, 2010 - 7:34am
  • Last Updated: Oct 7, 2016 - 9:52pm