*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
The performance of wireless data systems has been thoroughly studied in the context of a single base station. In this talk we examine networks with several interacting base stations, and specifically investigate the capacity impact of intra- and inter-cell mobility. We consider a dynamic setting where users come and go over time as governed by random finite-size data transfers, and explicitly allow for users to roam around over the course of their service. It may be shown that mobility tends to increase the capacity, not only in case of globally optimal scheduling, but also when each of the base stations operates according to a fair sharing policy. We further demonstrate that the capacity region for globally optimal scheduling is in general strictly larger than the stability region for a fair sharing discipline. However, if the users distribute themselves so as to maximize their individual throughputs, thus enabling some implicit coordination, then a fair sharing policy is in fact guaranteed to achieve stability whenever a globally optimal strategy is able to do so.
Note: The talk is based on joint work with Nidhi Hegde and Alexandre Proutiere (France Telecom R&D).