Distinguished Lecture with Tong Zhang, executive director of Tencent AI Lab!

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday December 3, 2018 - Tuesday December 4, 2018
      11:00 am - 11:59 am
  • Location: Marcus Nanotechnology Building 1116-1118
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    0.00
  • Extras:
Contact

Anna Stroup

astroup@cc.gatech.edu

Summaries

Summary Sentence: Distinguished Lecture with Tong Zhang, executive director of Tencent AI Lab!

Full Summary: No summary paragraph submitted.

Abstract
In classical optimization, one needs to calculate a full (deterministic) gradient of the objective function at each step, which can be  extremely costly for modern applications of big data machine learning. A remedy to this problem is to approximate each full gradient with a random sample over the data. This approach reduces the computational cost at each step, but introduces statistical variance.

In this talk, I will present some recent progresses on applying variance reduction techniques previously developed for statistical Monte Carlo methods to this new problem setting. The resulting stochastic optimization methods are highly effective for practical big data problems in machine learning, and the new methods have strong theoretical guarantees that significantly improve the computational lower bounds of classical optimization algorithms.

Collaborators: Rie Johnson, Shai Shalev-Schwartz, Jialei Wang

Biography: 
Tong Zhang is a machine learning researcher, and the executive director of Tencent AI Lab. Previously, he was a professor at Rutgers university, and worked at IBM, Yahoo, and Baidu.

Tong Zhang's research interests include machine learning algorithms and theory, statistical methods for big data and their applications. His research has been supported by many grants from funding agencies such as NSF and NIH. He is a fellow of ASA and IMS, and he has been in the editorial boards of leading machine learning journals and program committees of top machine learning conferences. His Google scholar page can be found here.

Tong Zhang received a B.A. in mathematics and computer science from Cornell University and a Ph.D. in Computer Science from Stanford University.

 

Additional Information

In Campus Calendar
Yes
Groups

College of Computing, School of Computational Science and Engineering

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Birney Robert
  • Workflow Status: Published
  • Created On: Nov 26, 2018 - 6:43pm
  • Last Updated: Nov 26, 2018 - 6:43pm