Phd Defense by Matthew Orr

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday November 5, 2018 - Tuesday November 6, 2018
      8:00 am - 9:59 am
  • Location: MRDC 3515
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: "Constructing Tensegrity-Inspired Microstructures in a Polymer Nanocomposite with Cellulosic Nanomaterials"

Full Summary: No summary paragraph submitted.

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

DOCTOR OF PHILOSOPHY

on Monday, November 5, 2018

8:00 AM
in MRDC 3515

 

will be held the

 

DISSERTATION DEFENSE

for

 

Matthew Orr

 

"Constructing Tensegrity-Inspired Microstructures in a Polymer Nanocomposite with Cellulosic Nanomaterials"

 

Committee Members:

 

Prof. Meisha Shofner, Advisor, MSE

Prof. Karl Jacob, MSE

Prof. Christopher Luettgen, ChBE

Prof. Carson Meredith, ChBE

Prof. Donggang Yao, MSE

 

Abstract:

 

The objective of this research is to develop and investigate prescribed microstructures based on the idea of tensegrity in a semicrystalline thermoplastic polymer matrix with cellulose nanomaterials (CNs). Two CNs, cellulose nanocrystals (CNCs) and nanofibrillated cellulose (CNFs) were used as nanofiller in two polymer matrices, polyethylene-co-vinyl alcohol with either 44 mol.% or 48 mol.% ethylene comonomer content (44EVOH and 48EVOH). Three different processing methods were used to investigate the level of CNC dispersion in EVOH: melt mixing, solution casting, and a multi-step protocol involving first solution casting followed by melt mixing CNCs with EVOH. The level of CNC dispersion in the nanocomposites was initially characterized with polarized optical microscopy below and above the melting temperature of EVOH. The nanocomposites’ thermomechanical, thermal, mechanical, and structural properties were also investigated as a function of CNC loading. The results suggested a multi-step protocol increased the level of CNC dispersion in EVOH the most compared to only melt or solution processing strategies. Next, prescribed microstructures were developed using a sequential biaxial stretching technique. The structures of the stretched samples were characterized with x-ray diffraction and thermomechanical properties were also investigated of the stretched films as a function of CNC loading. The results indicated storage modulus values increased in the direction of applied strain for a 2.5 wt.% CNC/44EVOH nanocomposite when it was uniaxially stretched versus the unstretched composite sample and these higher storage modulus values were retained and more uniform in-plane when the composite was biaxially stretched. Overall, the results indicated nanocomposites with anisotropic CNs designed in specified spatial arrangements in a thermoplastic matrix could increase thermomechanical properties of the polymer, and these polymer-particle arrangements behaved like tensegrity-inspired microstructures. The work presented herein contributes to the overall understanding of polymer processing- structure- property relationships using processing strategies commonly employed in commercial applications to incorporate and draw polymer and composite films.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Oct 19, 2018 - 3:21pm
  • Last Updated: Oct 19, 2018 - 3:21pm