DCL Seminar Series: Marco Pavone

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Planning and Decision-Making Techniques for Safely and Efficiently Maneuvering Autonomous Aerospace Vehicles

Contact
No contact information submitted.
Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

Planning and Decision-Making Techniques for Safely and Efficiently Maneuvering Autonomous Aerospace Vehicles

Full Summary:

Planning and Decision-Making Techniques for Safely and Efficiently Maneuvering Autonomous Aerospace Vehicles

Media
  • Marco Pavone Marco Pavone
    (image/jpeg)

Abstract: 

In this talk I will present planning and decision-making techniques for safely and efficiently maneuvering autonomous aerospace vehicles during proximity operations, manipulation tasks, and surface locomotion. I will first address the "spacecraft motion planning problem," by discussing its unique aspects and presenting recent results on planning under uncertainty via Monte Carlo sampling. I will then turn the discussion to higher-level decision making; in particular, I will discuss an axiomatic theory of risk and how one can leverage such a theory for a principled and tractable inclusion of risk-awareness in robotic decision making, in the context of Markov decision processes and reinforcement learning. Throughout the talk, I will highlight a variety of space-robotic applications my research group is contributing to (including the Mars 2020 and Hedgehog rovers, and the Astrobee free-flying robot), as well as applications to the automotive and UAV domains.

This work is in collaboration with NASA JPL, NASA Ames, NASA Goddard, and MIT.

Bio: Dr. Marco Pavone is an Assistant Professor of Aeronautics and Astronautics at Stanford University, where he is the Director of the Autonomous Systems Laboratory and Co-Director of the Center for Automotive Research at Stanford. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on autonomous aerospace vehicles and large-scale robotic networks. He is a recipient of a Presidential Early Career Award for Scientists and Engineers, an ONR YIP Award, an NSF CAREER Award, a NASA Early Career Faculty Award, a Hellman Faculty Scholar Award, and was named NASA NIAC Fellow in 2011. His work has been recognized with best paper nominations or awards at the Field and Service Robotics Conference, at the Robotics: Science and Systems Conference, and at NASA symposia.

Additional Information

Groups

Decision and Control Lab (DCL)

Categories
No categories were selected.
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
DCL Seminar Series
Status
  • Created By: mamstutz3
  • Workflow Status: Published
  • Created On: Oct 18, 2018 - 12:25pm
  • Last Updated: Oct 18, 2018 - 12:25pm