*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Algorithms & Randomness Center (ARC)
Anand Louis (Indian Inst. of Science)
Monday, September 10, 2018
Klaus 1116 East – 11:00 am
Title: On the complexity of clustering problems
Abstract: Euclidean k-means clustering, a problem having numerous applications, is NP-hard in the worst case but often solved efficiently in practice using simple heuristics. A quest for understanding the properties of real-world data sets that allow efficient clustering has lead to the notion of the perturbation resilience. In the first part of the talk, I'll describe an algorithm to recover the optimal k-means clustering in perturbation resilient instances.
In some cases, clustering with the k-means objective may result in a few clusters of very large cost and many clusters of small cost. This can be undesirable when we have a budget constraint on the cost of each cluster. Motivated by this, we study the "min-max k-means" clustering objective. In the second part of the talk, I'll show approximation algorithms for the min-max k-means problem.
Based on joint works with Amit Deshpande and Apoorv Vikram Singh.
----------------------------------
Videos of recent talks are available at: https://smartech.gatech.edu/handle/1853/46836
Click here to subscribe to the seminar email list: arc-colloq@cc.gatech.edu