Machine Learning Seminar Fall 2018 — Timnit Gebru of Microsoft Research

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday September 5, 2018
      12:15 pm - 1:15 pm
  • Location: Marcus Nanotechnology Building, Rooms 1116-1118
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Allie McFadden

Communications Officer

allison.blinder@cc.gatech.edu

Summaries

Summary Sentence: Gebru just finished her postdoc at Microsoft Research, New York City in the FATE (Fairness Transparency Accountability and Ethics in AI) group, where she studied algorithmic bias and the ethical implications underlying any data mining project.

Full Summary: The Machine Learning Center at Georgia Tech presents a seminar by Timnit Gebru of Microsoft Research. The event will be held in the Marcus Nanotechnology Building, Rooms 1116-1118, from 12:15-1:15 p.m. and is open to the public.

Media
  • Timnit Gebru Timnit Gebru
    (image/jpeg)

The Machine Learning Center at Georgia Tech presents a seminar titled "Understanding the limitations of AI: When Algorithms Fail"  by Timnit Gebru of Microsoft Research. The event will be held in the Marcus Nanotechnology Building, Rooms 1116-1118, from 12:15-1:15 p.m. and is open to the public.

For scheduling information, please contact Dhruv Batra at dbatra@gatech.edu

ABSTRACT

Automated decision-making tools are currently used in high stakes scenarios. From natural language processing tools used to automatically determine one’s suitability for a job, to health diagnostic systems trained to determine a patient’s outcome, machine learning models are used to make decisions that can have serious consequences on people’s lives. In spite of the consequential nature of these use cases, vendors of such models are not required to perform specific tests showing the suitability of their models for a given task. Nor are they required to provide documentation describing the characteristics of their models, or disclose the results of algorithmic audits to ensure that certain groups are not unfairly treated. Gebru will show some examples to examine the dire consequences of basing decisions entirely on machine learning based systems, and discuss recent work on auditing and exposing the gender and skin tone bias found in commercial gender classification systems. I will end with the concept of an AI datasheet to standardize information for datasets and pre-trained models, in order to push the field as a whole towards transparency and accountability.

BIO

Gebru just finished her postdoc at Microsoft Research, New York City in the FATE (Fairness Transparency Accountability and Ethics in AI) group, where she studied algorithmic bias and the ethical implications underlying any data mining project.

She received her Ph.D. from the Stanford Artificial Intelligence Laboratory, studying computer vision under Fei-Fei Li. Her thesis pertains to data mining large-scale publicly available images to gain sociological insight and working on computer vision problems that arise as a result. The Economist and others have recently covered part of this work. Some of the computer vision areas she is interested in include fine-grained image recognition, scalable annotation of images, and domain adaptation. Prior to joining Fei-Fei's lab, Gebru worked at Apple designing circuits and signal processing algorithms for various Apple products including the first iPad. She also spent an obligatory year as an entrepreneur (as all Stanford undergrads seem to do). Her research was supported by the NSF foundation GRFP fellowship and the Stanford DARE fellowship

Additional Information

In Campus Calendar
Yes
Groups

College of Computing, ML@GT

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
graduate students, seminar
Status
  • Created By: ablinder6
  • Workflow Status: Published
  • Created On: Jul 27, 2018 - 4:24pm
  • Last Updated: Aug 29, 2018 - 9:54am