BioE MS Thesis Presentation- Kelly Hyland

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday July 20, 2018 - Saturday July 21, 2018
      1:00 pm - 2:59 pm
  • Location: 3029 EBB
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Laura Paige

404-385-6655

Summaries

Summary Sentence: "Immobilization of Adhesive Protein Domains in PEG Hydrogels"

Full Summary: BioE MS Thesis Presentation-   "Immobilization of Adhesive Protein Domains in PEG Hydrogels"-  Kelly Hyland

Advisor: Julie Champion, PhD (Georgia Institute of Technology)

 

Committee

Andres Garcia, PhD (Georgia Institute of Technology)

Valeria Milam, PhD (Georgia Institute of Technology)

 

Immobilization of Adhesive Protein Domains in PEG Hydrogels

The fundamental goal of biomaterials design for regenerative medicine is to promote the restoration of functional tissue. In wound healing research, one strategy is to introduce space-filling materials, or scaffolds, to intervene and prevent scarring. The scaffold must be nontoxic, permit high rates of oxygen and small molecule diffusion, and offer tissue-matching stiffness. Critically, they must also promote attachment of wound healing cells. A class of materials called synthetic hydrogels meet the first three criteria, but must be functionalized with bioactive ligands to promote cell attachment.

Synthetic hydrogels, most numerously poly(ethylene glycol) (PEG) hydrogels, offer a modular platform for biomaterials design because the bioactive ligand identity and density, as well as hydrogel stiffness, can be precisely and independently controlled. However, PEG hydrogels have seldom been used as a 3D platform for investigating differences in cell behavior when in contact with different extracellular matrix protein domains. Using recombinant protein design, expression, and characterization, this study compares cell behavior when cultured on PEG hydrogels presenting structured protein domains and minimum sequence peptides. We observe differences in cell morphology, protease production and attachment force when cultured on hydrogels with different adhesive protein domains.

Additional Information

In Campus Calendar
No
Groups

Bioengineering Graduate Program

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Career/Professional development
Keywords
go-BioE
Status
  • Created By: Laura Paige
  • Workflow Status: Published
  • Created On: Jul 9, 2018 - 9:16am
  • Last Updated: Jul 9, 2018 - 9:16am