BioE PhD Defense Presentation- Kirsten Parratt

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday July 20, 2018 - Saturday July 21, 2018
      9:00 am - 10:59 am
  • Location: 1128 IBB
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Laura Paige

404-385-6655

Summaries

Summary Sentence: "3D MATERIAL CYTOMETRY (3DMAC): HIGH-THROUGHPUT, HIGH REPLICATE SCREENING OF MATERIALS USING FLOW CYTOMETRY"

Full Summary: BioE PhD Defense Presentation-  "3D MATERIAL CYTOMETRY (3DMAC): HIGH-THROUGHPUT, HIGH REPLICATE SCREENING OF MATERIALS USING FLOW CYTOMETRY" - Kirsten Parratt

Advisor: Krishnendu Roy, Ph.D. (Georgia Institute of Technology, Emory University)

Committee:

Robert Guldberg, Ph.D. (Georgia Institute of Technology)

Hang Lu, Ph.D. (Georgia Institute of Technology)

Valeria Milam, Ph.D. (Georgia Institute of Technology)

Johnna Temenoff, Ph.D. (Georgia Institute of Technology, Emory University)

 

3D Material Cytometry (3DMaC): High-throughput, high replicate Screening of Materials using flow cytometry

 

Biomaterials have become a common feature in everyday life ranging from disposable daily contact lenses to implanted devices engineered to outlast the patient. There is a great deal of unrealized commercial potential for biomaterials systems and ample interest in determining optimal biomaterials for applications such as tissue engineering and detection of biological analytes. Unlike past challenges in polymer selection, candidate biomaterials need to be tested while also accounting for the complexity of living cells and the variability in biological systems. These challenges can be partially addressed by analyzing a large number of biomaterials in a high-throughput manner with high replicate number; however, such methods are lacking.

 

This thesis shows how flow cytometry can be adapted to the study of biomaterials. Flow cytometry allows for the automated collection of a large number of unique events in a short time period and is already widely used for cell analyses. Here, biomaterial, specifically hydrogel, constructs are fabricated and a combination of shape-, size-, and fluorescence-barcoding (SSF) enables high-throughput, high replicate, highly multiplexed analyses using imaging flow cytometry. This dissertation illustrates how this new method, 3D Material Cytometry (3DMaC), can be applied to tissue engineering and analyte detection, and discusses how the method can be extended to additional biomaterial studies.

Additional Information

In Campus Calendar
No
Groups

Bioengineering Graduate Program

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Career/Professional development
Keywords
go-BioE
Status
  • Created By: Laura Paige
  • Workflow Status: Published
  • Created On: Jul 2, 2018 - 2:33pm
  • Last Updated: Jul 2, 2018 - 2:33pm