Nano@Tech:Interfacial Mechanics of Cell-Nanoparticles System: A Computational Perspective

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
Contact

david.gottfried@ien.gatech.edu

Summaries

Summary Sentence: Nano@Tech is an organization comprised of professors, graduate students, and undergraduate students from Georgia Tech and nearby academic institutions, as well as professionals from the scientific community that are interested in nanotechnology.

Full Summary: In this talk, I would like to provide a novel way to explore the mechanics of cell-nanomaterial interactions via a systematic and multiscale computational methodology with a focus on the effects of surface properties and mechanical properties of particles on the particle uptake and release processes, and to establish effective guidelines for designing controllable drug delivery from the computational perspective.

Xianqiao Wang, Ph.D.
Associate Professor; College of Engineering, University of Georgia

Abstract : With the rapid development of nanotechnology, recent years have witnessed the explosive growth of a variety of nanometer-sized nanoparticles as candidates for an ever increasing list of potential applications for next generation electronics, microchips, composites, biosensors, and drug delivery. On one hand, the growing applications of nanomaterials pose serious concerns about their toxicity as they enter the human body via various pathways including the respiratory system, skin absorption, intravenous injection and implantation. On the other hand, nanomaterials show promising potentials in medical imaging and gene/drug delivery. Indeed, understanding the fundamental physics of the cell-nanomaterial interaction in the process of endocytosis is not only of paramount significance to the evaluation of beneficial and hazardous effects of nanotechnology but also to the medical applications such as gene/drug delivery and medical imaging. In this talk, I would like to provide a novel way to explore the mechanics of cell-nanomaterial interactions via a systematic and multiscale computational methodology with a focus on the effects of surface properties and mechanical properties of particles on the particle uptake and release processes, and to establish effective guidelines for designing controllable drug delivery from the computational perspective.

Bio: Dr. Xianqiao Wang is an Associate Professor of College of Engineering and the director of the Computational Nano/Bio-Mechanics Laboratory at the University of Georgia (UGA). Before he joined the University of Georgia in August 2012, he was an Assistant Research Professor at the Georgia Washington University (GWU) after he got his Ph.D. in Mechanical Engineering in 2011 from GWU. He has published more than 100 peer-reviewed papers in top international journals such as ACS Nano, Advanced Sciences, Nanoscale, Carbon, Brain Structure and Functions, Cerebral Cortex, etc. He was the recipient of the 2017 International Conferences on Computational Methods (ICCM) Young Investigator Award and the recipient of 2018 College of Engineering Excellence in Instruction. Currently his work is funded by several NSF grants, and his research interests focus on the computational biomechanics, bio-inorganic interfaces, and multiscale brain modeling.

Additional Information

In Campus Calendar
Yes
Groups

3D Systems Packaging Research Center, Georgia Electronic Design Center (GEDC), Institute for Electronics and Nanotechnology, NanoTECH

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
the Institute for Electronics and Nanotechnology, the School of Electrical and Computer Engineering, The School of Mechanical Engineering, Nanotechnology, flexible electronics, carbon nanotubes, electro-optics, the institute for materials, the Woodruff School of Mechanical Engineering, the School of Chemical and Biomolecular Engineering, electrical engineering, Biomedical Engineering, photonics, materials, nanomaterials, biomedical imaging, drug delivery, Cell-matrix Interactions
Status
  • Created By: Christa Ernst
  • Workflow Status: Published
  • Created On: Jun 7, 2018 - 1:33pm
  • Last Updated: Sep 26, 2018 - 1:52pm