Phd Defense by Jose Garcia

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday May 14, 2018 - Tuesday May 15, 2018
      2:00 pm - 3:59 pm
  • Location: Atlanta, GA
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Hydrogel Engineering for Enhanced Function of Encapsulated Mesenchymal Stem Cells

Full Summary: No summary paragraph submitted.

Jose Garcia

Ph.D. Dissertation Defense

2:00 pm, Monday, May 14th, 2018

IBB Building, Room 1128

 

Advisor: Andrés J. García, Ph.D. (Georgia Institute of Technology)

 

Committee:

Robert Guldberg, Ph.D. (Georgia Institute of Technology)

Edward Botchwey, Ph.D. (Georgia Institute of Technology)

Alberto Fernandez-Nieves, Ph.D. (Georgia Institute of Technology)

W. Robert Taylor, M.D, Ph.D. (Emory University)

 

 

Hydrogel Engineering for Enhanced Function of Encapsulated Mesenchymal Stem Cells

 

Since the discovery of adult human mesenchymal stem cells in the late 1900’s, the potential of utilizing these cells in the clinic for cell-therapy applications has been an ever-present goal. Unfortunately, clinical trials using these cells have garnered lackluster results with a high degree of variability in patient outcome and in many cases no difference between patients who received these adult stem cell or placebo. Various factors account for such results including the inability to properly control cell presence via the routine method of intravenous administration, the inability to control cell phenotype once the cells are injected into the patient and the harsh microenvironment cells are injected into. Biomaterials can provide solutions for these factors through engineering scaffolds to present needed signals to both encapsulated stem cells and the surrounding microenvironment. The objective of this project is to engineer bioartificial hydrogels presenting specific signals in the form of integrin-specific ligands and covalently-bound proteins to enhance mesenchymal stem cell activity and efficacy in wound and disease models.

We investigated the application of these bioarticifial hydrogels towards two different goals: 1) to enhance vascularization and associated stem cell survival in a critical size bone defect and 2) to enhance immunomodulation of stem cells in a wound regeneration model. For our first goal, we found that hydrogels presenting the α2β1 ligand ‘GFOGER’ resulted in enhanced vascularization of bone defects compared to hydrogels presenting the αvβ3 ligand ‘RGD’ in the absence of vasculogenic protein. For our second goal, we found that hydrogels functionalized tethered IFN-γ enhanced the immunomodulatory properties of encapsulated hMSCs which led to enhanced tissue resolution in a colonic wound model. Together, our findings elucidate novel ways to enhance adult stem cell efficacy and further the applicability of these cells in clinical settings.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 30, 2018 - 11:45am
  • Last Updated: Apr 30, 2018 - 11:45am