PhD Proposal by Matthew G. Boebinger

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday April 23, 2018 - Tuesday April 24, 2018
      3:00 pm - 4:59 pm
  • Location: MRDC 4211
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: In Situ Examination of Nanoscale Reaction Pathways in Battery Materials

Full Summary: No summary paragraph submitted.

THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING

 

GEORGIA INSTITUTE OF TECHNOLOGY

 

Under the provisions of the regulations for the degree

DOCTOR OF PHILOSOPHY

on Monday, April 23, 2018

3:00 PM
in MRDC 4211

 

will be held the

 

DISSERTATION PROPOSAL DEFENSE

for

 

Matthew G. Boebinger

 

In Situ Examination of Nanoscale Reaction Pathways in Battery Materials”

 

Committee Members:

 

Prof. Matthew McDowell, Advisor, MSE

Prof. Josh Kacher, MSE

Prof. Meilin Liu, MSE

Prof. Gleb Yushin, MSE

Prof. Ting Zhu, ME/MSE

 

Abstract:

 

In an effort to engineer cheaper, safer and more energy-dense batteries, new materials must be developed to store and transport active ions. However, the electrochemical reaction mechanisms of these materials must be understood and controlled to maximize reversibility during charge and discharge. The objective of this proposal is to use in situ transmission electron microscopy (TEM) to understand nanoscale reaction mechanisms and degradation processes in high-capacity electrode materials for Li-, Na- and K-ion batteries, as well as Li-ion conducting ceramic electrolytes.

Na- and K-ion batteries are promising due to their low cost. However, the more substantial volumetric changes that these electrode materials undergo during reaction decreases the cyclability of these systems. For the continued development of these battery systems, it is critical to understand how the larger Na+ and K+ ions effect the nanoscale phase transformations of these reactions to improve reversibility of these battery systems. In addition, recent progress has been made towards engineering solid electrolytes for use in novel all-solid-state Li batteries with improved safety and higher energy density. However, the growth of a high-impedance interfacial phase at the Li metal – ceramic electrolyte interface is a challenge that has hindered development. In both of these cases, a better understanding of the structural and chemical evolution of these materials during reaction is needed.

The first portion of this proposal is focused on using in situ experiments to understand the nanoscale transformation pathways in different battery materials during reaction with Li+, Na+ and K+ ions. The materials studied (Cu2S, FeS2 and Sb) show interesting and counter-intuitive phase evolution and mechanical degradation behavior when reacting with the alkali ions of different sizes. The second portion of the proposal is focused on investigating interfacial phase transformations between lithium metal and oxide/phosphate solid electrolyte materials. These experiments will be conducted in combination with macroscale characterization and electrochemistry techniques to draw connections between the nanoscale transformations and overall electrochemical behavior of these battery systems.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd proposal
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 6, 2018 - 12:00pm
  • Last Updated: Apr 6, 2018 - 12:00pm