*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Eva Kanso, Professor, University of Southern California
Abstract:
Motile cilia are hair-like protrusions from epithelial cells that beat collectively to transport fluid. On the tissue level, cilia serve diverse biological functions, such as mucociliary clearance in the airways and cerebrospinal fluid transport in the brain ventricles. Yet, the relationship between the structure and organization of ciliated tissues and their biological function remains elusive.
Here, I will present a series of models that examine the role of cilia-driven flows in particle transport, mixing, capture and filtering. I will conclude by commenting on the implications of these models to understanding the biophysical mechanisms underlying the interaction of ciliated tissues with microbial partners.