*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
"Cholinergic Sensorimotor Integration Regulates Rapid Behavioral Decisions"
Yun Zhang, Ph.D.
Professor
Department of Organismic and Evolutionary Biology
Harvard University
During active exploration, the spatial and temporal pattern of the sensory cue perceived by an animal is shaped by the animal’s own movement. Thus, to move towards a sensory target, the nervous system needs to make rapid locomotory decisions by integrating the sensory information with the ongoing motor state. One of our studies addresses the signaling mechanisms underlying sensorimotor integration in C. elegans during olfactory steering, when the sinusoidal movements of the worm generate an in-phase oscillation in the concentration of the sampled odorant. We find that cholinergic neurotransmission encodes the oscillatory sensory response and the motor state of head undulations by acting through an acetylcholine-gated channel and a muscarinic acetylcholine receptor, respectively. These signals converge on two axonal domains of an interneuron RIA, where the sensory-evoked signal suppresses the motor-encoding signal to transform the spatial information of the odorant into the asymmetry between the axonal activities. The asymmetric synaptic outputs of the RIA axonal domains generate a directional bias in the locomotory trajectory. We also find that this type of sensorimotor integration can be modulated by experience to alter chemotactic movement. Together, our study reveals how cholinergic neurotransmission regulates sensorimotor integration during goal-directed locomotions. In the mammalian central nervous system, cholinergic neurotransmission integrates sensory processing with the internal state, including the information of motor generation. It also mediates the hippocampal theta wave that is proposed to subserve the sensorimotor integration underlying rapid behavioral decisions. Our work characterizes a simple form of cholinergic integration that regulates rapid neural processing during active exploration of the environment.
This presentation can be seen via videoconference on the Emory Campus HSRB E260