Correlating atomic-scale structure with electronic properties of 2D materials

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday March 15, 2018 - Friday March 16, 2018
      3:00 pm - 2:59 pm
  • Location: Howey - School of Physics N110
  • Phone: 404-894-5203
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

shaun.ashley@physics.gatech.edu

Summaries

Summary Sentence: Correlating atomic-scale structure with electronic properties of 2D materials

Full Summary: No summary paragraph submitted.

Media
  • Prof. Shawna Hollen Prof. Shawna Hollen
    (image/jpeg)

School of Physics Hard Condensed Matter & AMO Seminar: Prof. Shawna Hollen, University of New Hampshire 

Two-dimensional crystals have received a lot of attention for their promise of a wide range of applications, and as a platform to study fundamentally new physics. Towards new applications, black phosphorus is a particularly exciting material because of its direct and tunable bandgap from 0.4-1.5 eV and high mobility carriers. However, samples degrade rapidly in air and are mysteriously p-doped.

In this talk, I will present our recent work that shows atomic vacancies are prevalent and charged in commercial black phosphorus crystals—the likely root of p-doping. Now, vacancies appear to be more important to control than impurities. On the fundamental side, 2D crystals present a unique opportunity to correlate changes in atomic-scale structure with device-scale transport using scanned probe microscopy because they are entirely surface. I will also present our early work correlating local disorder with transport in 2D material devices.

Additional Information

In Campus Calendar
Yes
Groups

Invited Audience
Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
physics
Status
  • Created By: Shaun Ashley
  • Workflow Status: Published
  • Created On: Mar 5, 2018 - 3:13pm
  • Last Updated: Mar 5, 2018 - 3:15pm