*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Physical sensors (thermal, light, motion, etc.) are becoming ubiquitous and offer important benefits to society. However, allowing sensors into our private spaces has resulted in considerable privacy concerns. Differential privacy has been developed to help alleviate these privacy concerns. In this talk, we’ll develop and define a framework for releasing physical data that preserves both utility and provides privacy. Our notion of closeness of physical data will be defined via the Earth Mover Distance and we’ll discuss the implications of this choice. Physical data, such as temperature distributions, are often only accessible to us via a linear transformation of the data.
We’ll analyse the implications of our privacy definition for linear inverse problems, focusing on those that are traditionally considered to be "ill-conditioned”. We’ll then instantiate our framework with the heat kernel on graphs and discuss how the privacy parameter relates to the connectivity of the graph. Our work indicates that it is possible to produce locally private sensor measurements that both keep the exact locations of the heat sources private and permit recovery of the ``general geographic vicinity'' of the sources. Joint work with Anna C. Gilbert.