Integrated Cancer Research Center Seminar

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday March 27, 2018 - Wednesday March 28, 2018
      4:00 pm - 4:59 pm
  • Location: Parker H. Petit Institute for Bioengineering and Bioscience, Room 1128
  • Phone: (404) 894-6228
  • URL: Petit Institute website
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

John McDonald, Ph.D.

Summaries

Summary Sentence: "Molecular Machines Kill Cells by Drilling Holes in the Lipid Bilayers" - James M. Tour, Ph.D. - Rice University

Full Summary: No summary paragraph submitted.

Media
  • Integrated Cancer Research Center Integrated Cancer Research Center
    (image/jpeg)

"Molecular Machines Kill Cells by Drilling Holes in the Lipid Bilayers"

James M. Tour, Ph.D.
T. T. and W. F. Chao Professor of Chemistry
Professor of Computer Science
Professor of Materials Science and NanoEngineering
Smalley-Curl Institute and the NanoCarbon Center
Rice University

 

Beyond the more common chemical delivery strategies, several physical techniques are used to open lipid bilayers of cellular membranes. These include electric and magnetic elds, temperature, ultrasound and light, to introduce compounds into cells, release molecular species from cells, or to selectively induce apoptosis or necrosis. It was not until recently that scientists started exploiting molecular motors and switches that can change their conformations in a controlled manner upon external stimuli, to produce useful work for biomedical applications. In this talk we show that nanomechanical action can be used to open cellular membranes by association of molecular motors with lipid bilayers, and then activating the motors with light. Using precisely designed molecular motors and complementary experimental protocols, nanomechanical action can (a) induce the diffusion of analytes out of synthetic vesicles, (b) enhance diffusion of traceable molecular machines into and within live cells, (c) induce necrosis, (d) introduce analytes into live cells, and (e) be selectively targeted to speci c live cell-surface recognition sites through nanomachines bearing short peptide addends. While this was initially demonstrated with UV light, other sources of light are being considered including visible, 2-photon near IR, and Cherenkov-emitted light for deep tissue use.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Wallace H. Coulter Dept. of Biomedical Engineering

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Sports/Athletics
Keywords
IBB
Status
  • Created By: Colly Mitchell
  • Workflow Status: Published
  • Created On: Feb 28, 2018 - 8:26am
  • Last Updated: Mar 7, 2018 - 2:50pm