ISyE Seminar - Vineet Goyal

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday April 4, 2018 - Thursday April 5, 2018
      3:00 pm - 3:59 pm
  • Location: Groseclose 402
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: ISyE Seminar - Vineet Goyal

Full Summary: No summary paragraph submitted.

TITLE: On the Power of Affine Policies in Two-stage Adjustable Robust Optimization

 

ABSTRACT:

Affine policies are widely used as a solution approach in dynamic optimization where computing an optimal adjustable solution is usually intractable. While the worst case

performance of affine policies can be significantly bad, the empirical performance is observed to be near-optimal for a large class of problem instances. For instance, in the two-stage dynamic robust optimization problem with linear covering constraints and uncertain right hand side, the worst-case approximation bound for affine policies is O(√m) that is also tight (see Bertsimas and Goyal [8]), whereas observed empirical performance is near-optimal. This work aims to address this stark-contrast between the worst-case and the empirical performance of affine policies. 

 

We show that affine policies are provably a good approximation for the two-stage adjustable robust optimization problem with high probability on random instances

where the constraint coefficients are generated i.i.d. from a large class of distributions; thereby, providing a theoretical justification of the observed empirical performance. We also consider the performance of affine policies for an important class of uncertainty sets, namely the budget of uncertainty and intersection of budget of uncertainty sets. We show that surprisingly affine policies provide nearly the best possible approximation for this class of uncertainty sets that matches the hardness of approximation; further confirming the power of affine policies.

 

This talk is based is joint work with my student Omar El Housni.

 

BIO: Vineet Goyal is Associate Professor in the Industrial Engineering and Operations Research Department at Columbia University where he joined in 2010. He received his Bachelor's degree in Computer Science from Indian Institute of Technology, Delhi in 2003 and his Ph.D. in Algorithms, Combinatorics and Optimization (ACO) from Carnegie Mellon University in 2008. Before coming to Columbia, he spent two years as a Postdoctoral Associate at the Operations Research Center at MIT. He is interested in the design of efficient and robust data-driven algorithms for large scale dynamic optimization problems with applications in  revenue management and smart grid problems. His research has been continually supported by grants from NSF and industry including NSF CAREER Award in 2014 and faculty research awards from Google, IBM and Adobe.

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
No categories were selected.
Keywords
No keywords were submitted.
Status
  • Created By: nhendricks6
  • Workflow Status: Published
  • Created On: Feb 6, 2018 - 10:08am
  • Last Updated: Mar 1, 2018 - 9:42am