2018 Suddath Award Winner Presentation

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday January 30, 2018
      11:30 am - 12:15 pm
  • Location: Parker H. Petit Institute for Bioengineering and Bioscience, Room 1128
  • Phone: (404) 894-6228
  • URL: Petit Institute website
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Colly Mitchell
Events Manager

Summaries

Summary Sentence: "Shedding Light on Heme Signaling Networks with Heme Sensors and Quantitative Mass Spectrometry" - David Hanna, Doctoral Candidate - Amit Reddi, Advisor

Full Summary: No summary paragraph submitted.

The Parker H. Petit Institute for Bioengineering & Bioscience awards the Suddath Symposium graduate student awards to three students for their grand achievements in biological or biochemical research at the molecular or cellular level. The first place awardee presents their work to the Petit Institute community during the annual Suddath Symposium.

"Shedding Light on Heme Signaling Networks with Heme Sensors and Quantitative Mass Spectrometry"

2018 Suddath Award Winner
David Hanna
Doctoral Candidate
School of Chemistry and Biochemistry
Amit Reddi Ph.D. - Advisor

Heme is an essential yet cytotoxic iron containing metallonutrient. Well recognized for its role as a protein prosthetic group, more recent genetic and biochemical evidence indicate heme can act as a dynamic signaling molecule. Due to the cytoxicity associated with free or misregulated heme, the bioavailable heme pool utilized for signaling is tightly regulated and buffered to low levels, making heme acquisition and heme dependent signaling reliant on the ability to safely mobilize heme. However, the factors involved in mobilizing heme have remained poorly understood. Recently, utilizing our novel heme sensor technology, we revealed that heme is a highly dynamic molecule that is regulated by cell cycle and that nitric oxide (NO), a well-established and ubiquitous signaling molecule, mobilizes cytosolic and nuclear heme pools. Additionally, we discovered that under Pb stress the regulatory heme pool increases while total heme is diminished. Having identified several physiological and pathophysiogical conditions that mobilize labile heme, in collaboration with Prof. Matt Torres, we are now developing mass spectrometry-based techniques to identify proteins that bind and release heme in these contexts to define new heme signaling networks.


References: 
[1]      Hanna DA, Harvey RM, Martinez-Guzman O, Yuan X, Chandrasekharan B, Raju G, Outten FW, Hamza I, and Reddi AR. Heme Dynamics and Speciation Revealed by Genetically Encoded Fluorescent Heme Sensors. Proc Natl Acad Sci, 2016;113:7539-7544.

[2]      Hanna DA, Martinez-Guzman O, and Reddi AR. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors. Biochemistry Article ASAP, 2017; DOI: 10.1021/acs.biochem.7b00007

[3]      Yuan X, Rietzschel N, Kwon H, Nuno Da Silva ABW, Hanna DA, Phillips J, Raven E, Reddi AR and Hamza I. Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc Natl Acad Sci, 2016; 113(35): E5144-E5152.

[4]      Mense, S. M. and L. Zhang. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res, 2006; 16(8): 681-692. 


The Parker H. Petit Institute for Bioengineering and Bioscience, an internationally recognized hub of multidisciplinary research at the Georgia Institute of Technology, brings engineers, scientists, and clinicians together to solve some of the world’s most complex health challenges. With 19 research centers, more than 200 faculty members, and $24 million in state-of-the-art facilities, the Petit Institute is translating scientific discoveries into game-changing solutions to solve real-world problems.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Wallace H. Coulter Dept. of Biomedical Engineering

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
IBB, graduate students
Status
  • Created By: Colly Mitchell
  • Workflow Status: Published
  • Created On: Jan 12, 2018 - 1:49pm
  • Last Updated: Jan 12, 2018 - 2:39pm