Geochemical Controls on Protocell Self-Assembly in the Origins of Life

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday March 1, 2018
      11:00 am - 11:50 am
  • Location: Ford Environmental Science & Technology Bldg., Rm. L1205
  • Phone: 404-894-1757
  • URL:
  • Email:
  • Fee(s):
    Free
  • Extras:
Contact

Host: Jennifer Glass

Logistics: Natasha Lawson

Summaries

Summary Sentence: A seminar by Dr. Nita Sahai, School of Earth and Atmospheric Sciences Spring 2018 Seminar Speaker Series

Full Summary: No summary paragraph submitted.

Media
  • Nita Sahai Nita Sahai
    (image/jpeg)

EAS Spring 2018 Seminar Series Presents: Dr. Nita Sahai, University of Akron

The focus of our work is to determine the constraints placed by atmosphere-water-rock interactions on the environmental conditions for self-assembly of the molecular building blocks of the earliest like-like entities, “protocells.” 

We have addressed the problem that modern geochemical concentrations of total dissolved phosphate (PT) and Mg2+ are much lower than those are required for non-enzyamtic (prebiotic) RNA synthesis, while Mg2 and Ca2+ concentrations are too high for membrane stability, so how did life emerge on early Earth? 

We used a geochemical thermodynamic modeling approach, to show that a single, globally-occurring geological process of komatiite rock weathering and evaporation of the resulting solutions under specific partial pressures of atmospheric CO2 (PCO2) can quantitatively provide the PT, Mg2+ and Ca2+ concentrations required for nucleotide synthesis, RNA polymerization and protocell-membrane stability. 

Conversely, the biologically-required concentrations of PT, Mg2+ and Ca2+ place constraints on the PCO2 levels on early Earth compared to previous estimates ranging over five orders of magnitude. Using these environmental constraints on Mg2+ and Ca2+ concentrations, we examined the stability and evolution of simple protocell membranes from pure single chain amphiphile (SCA) compositions through mixed SCA-phospholipid (PL) to pure PL compositions found in modern cells. 

We showed that, rather than acting being toxic, the divalent cations promoted evolution of the membranes towards more modern compositions. We also found that RNA oligomer synthesis is possible even at much lower concentrations of Mg2+ than previously reported, well within the concentration range constrained by the atmosphere-water-rock interactions. 

Thus, we have used a geochemical modeling approach to create the components of a simple protocell under geochemically plausible conditions.

 

Additional Information

In Campus Calendar
Yes
Groups

EAS

Invited Audience
Faculty/Staff, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
EAS Seminar
Status
  • Created By: nlawson3
  • Workflow Status: Published
  • Created On: Dec 21, 2017 - 9:34am
  • Last Updated: Jan 31, 2018 - 12:00pm