Ph.D. Dissertation Defense - Blake Marshall

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday December 21, 2017 - Friday December 22, 2017
      2:00 pm - 3:59 pm
  • Location: Room W218, Van Leer
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Staggered Pattern Energy Harvesting and Retro-directive Backscatter Communications for Passive RFID Tags and Sensors

Full Summary: No summary paragraph submitted.

TitleStaggered Pattern Energy Harvesting and Retro-directive Backscatter Communications for Passive RFID Tags and Sensors

Committee:

Dr. Gregory Durgin, ECE, Chair , Advisor

Dr. Andrew Peterson, ECE

Dr. Paul Steffes, ECE

Dr. Manos Tentzeris, ECE

Dr. Hoseon Lee, KSU

Dr. Shawn Rogers, Honeywell

Abstract:

This work introduces an optimal backscatter and energy harvesting solution for radio frequency identification (RFID) by using N antennas with N ports called a staggered patterned and retro-directive (SPAR) tag. By using the same physical area as a lower frequency single antenna tag, SPAR tags improve both the power-up and backscatter range of passive RFID tags without dramatically impacting coverage. By using multiple ports on the SPAR tag, the structure is able to create multiple radiation patterns. This is demonstrated by using a two-element patch antenna array fed by a unitary scattering matrix (implemented as a 90˚ hybrid) on a 5.8 GHz RFID tag. In addition to canonical designs, new SPAR structures are hypothesized with optimized size, bandwidth, etc. A co-simulator is developed capable of searching a vast space of possible feed networks with N-by-N ports that meet the requirements of a unitary scattering matrix. A new structure that meets the 2-by-2 SPAR scattering matrix requirements is presented to demonstrate the capabilities of the software. The software can also be generalized to discover new physical structures of larger N−by−N SPAR tags or other microwave devices such as circulators, power splitters, etc.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Dec 8, 2017 - 12:37pm
  • Last Updated: Dec 8, 2017 - 12:37pm