*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Cheng Yang
PhD Defense Presentation
Date: Thursday, Dec. 7, 2017
Time: 8:00 AM (Atlanta), 9:00 PM (Beijing)
Location: Whitaker Building McIntire Room (Room 3115, GT campus)
Room 2-102, Liaokaiyuan Building (PKU campus)
Committee Members:
Huaiqiu Zhu, PhD (Advisor, BME, PKU)
May D. Wang, PhD (Co-advisor, BME, GT/Emory)
Zuhong Lu, PhD (BME, PKU)
Jianzhong Xi, PhD (BME, PKU)
Minghua Deng, PhD (School of Mathematical Sciences, PKU)
An ab initio lncRNA identification and functional annotation tool based on deep learning
Long noncoding RNAs (lncRNAs) play important biological roles and are implicated in human disease. To characterize lncRNAs, both identifying and functionally annotating them are essential to be addressed. Despite the successes either in identifying from transcripts or predicting interacting proteins by a variety of tools, it continues to be interesting to develop novel ab initio methods to accurately identify and annotate lncRNAs. Moreover, a comprehensive construction for lncRNA annotation is desired to facilitate the research in the field. In this paper, we propose a novel lncRNA identification and functional annotation tool named LncADeep. For lncRNA identification, LncADeep integrates sequence intrinsic features and homology features into a deep belief network (DBN) of deep learning algorithm and constructs models targeting both full- and partial-length transcripts. For functional annotation, LncADeep predicts a lncRNA’s interacting proteins based on deep neural networks (DNN) of deep learning algorithm, using both sequence and structure information. Furthermore, LncADeep integrates KEGG and Reactome pathway enrichment analysis and functional module detection with the predicted interacting proteins, and provides the enriched pathways and functional modules as functional annotations for lncRNAs. Test results show that LncADeep has outperformed state-of-the-art tools, both for lncRNA identification and for lncRNA-protein interaction prediction, and then presents a functional interpretation. We expect that LncADeep can contribute to identifying and annotating novel lncRNAs, and providing helpful information for biologists.