Ph.D. Dissertation Defense - Hamza Abbasi

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday December 20, 2017
      1:30 pm - 3:30 pm
  • Location: Room 3202, Klaus
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Efficient Safety Message Dissemination in Vehicular Ad Hoc Networks

Full Summary: No summary paragraph submitted.

TitleEfficient Safety Message Dissemination in Vehicular Ad Hoc Networks

Committee:

Dr. John Copeland, ECE, Chair , Advisor

Dr. Yusun Chang, ECE, Co-Advisor

Dr. Raheem Beyah, ECE

Dr. Henry Owen, ECE

Dr. Ellen Zegura, CoC

Dr. Mostafa Ammar, CoC

Abstract:

Over the past few years, the occurrence of enormous human, societal, environmental and economic losses due to traffic accidents has led toward a search for highly innovative and practical solutions to improve safety on the roads. One such initiative is the introduction of Intelligent Transportation Systems (ITS), whereby a vital application is to ensure road safety by fast and reliable dissemination of safety messages. This research develops novel and practical schemes to efficiently and reliably disseminate safety information in Vehicular Ad Hoc Networks (VANETs) using Vehicle-to-Vehicle (V2V) and Vehicle-to- Infrastructure (V2I) communication to improve the transportation safety.

Firstly, an innovative multi-hop broadcasting protocol is developed, which exploits a smart forwarder selection process, handshake-less broadcasting, ACK Decoupling and efficient collision resolution mechanism. This protocol significantly improves the speed of safety message propagation without compromising on the reliability. Secondly, this research proposes a novel architecture that facilitates the effective sharing of safety information in VANETs by exchanging and storing the data (about potential threats) obtained from the neighboring vehicles as well as from on-board sensor technologies. The architecture leverages entirely on BSMs and improves the visibility and situational awareness of vehicles. The key attraction of this architecture is its novelty, simplicity, practicality, and applicability. Both of the proposed schemes were evaluated under simulation and real-world experimental conditions. The results establish and validate the performance gain of the proposed schemes. The highlight of the above techniques is that the exchange of safety information among vehicles takes place using the existing V2V standards, without requiring any modifications to the standards. Finally, these techniques can be readily deployed to improve safety on the roads, and thus, reduce human causalities as well as lower the social, environmental and economic expenses. 

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Nov 27, 2017 - 5:16pm
  • Last Updated: Dec 1, 2017 - 5:32pm