Modeling Liquid Crystal Elastomers: from Auto-Origami to Light-Driven Autonomous Soft Robotics

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday November 7, 2017 - Wednesday November 8, 2017
      3:00 pm - 3:59 pm
  • Location: Klaus 1116 West
  • Phone: 404-894-5203
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

shaun.ashley@physics.gatech.edu

Summaries

Summary Sentence: Modeling Liquid Crystal Elastomers: from Auto-Origami to Light-Driven Autonomous Soft Robotics

Full Summary: No summary paragraph submitted.

Related Files

School of Physics Soft Condensed Matter & Physics of Living Systems Seminar: Prof. Robin Selinger, Kent State University

Liquid crystal elastomers combine the orientational order of liquid crystals with the elasticity of polymers. Remarkably, these materials flex and deform under stimuli such as a change of temperature, and undergo autonomous folding, or "auto-origami," into complex shapes. The material's liquid crystal director field defines the local axis of extension/contraction, and can be patterned, or "blueprinted," to induce a programmed shape transformation.  Incorporation of photoactive azobenzene makes these materials move in response to illumination. 

We model the dynamics of these shape transformations using finite element elastodynamics, examining director fields incorporating twist, splay, and high-order topological defects. We also model the generation of light-driven mechanical wave motion in a photoactive liquid crystal polymer film [1], in collaboration with the Broer experimental group at TU Eindhoven.

Our simulations demonstrate the mechanism that produces continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop driven by self-shadowing. Potential applications include autonomous light-driven locomotion and self-cleaning surfaces.

 Work supported by NSF-DMR 1409658, NSF-CMMI 1436565, and NSF-CMMI 1663041. [1] Anne Helene Gelebart, Dirk Jan Mulder, Michael Varga, Andrew Konya, Ghislaine Vantomme, E. W. Meijer, Robin L. B. Selinger, and  Dirk J. Broer, "Making waves in a photoactive polymer film," Nature v. 546, p. 632, 29 JUNE 2017.

Additional Information

In Campus Calendar
Yes
Groups

Invited Audience
Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
physics
Status
  • Created By: Shaun Ashley
  • Workflow Status: Published
  • Created On: Oct 26, 2017 - 2:48pm
  • Last Updated: Oct 26, 2017 - 2:52pm