Ph.D. Dissertation Defense - Marshall Tellekamp

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday November 8, 2017
      11:15 am - 1:15 pm
  • Location: Room W218, Van Leer
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Lithium Niobium Oxide Multifunctional Materials and Applications in Neuromorphic Computing

Full Summary: No summary paragraph submitted.

TitleLithium Niobium Oxide Multifunctional Materials and Applications in Neuromorphic Computing

Committee:

Dr. Alan Doolittle, ECE, Chair , Advisor

Dr. William Hunt, ECE

Dr. Doug Yoder, ECE

Dr. Arijit Raychowdhury, ECE

Dr. Faisal Alamgir, MSE

Abstract:

This work explores the growth fundamentals and multifunctional applications of materials in the Li-Nb-O family with specific focus on the memristive applications of LiNbO2 as a synaptic analogue in neuromorphic computing architectures. Initial studies include the development of a flux versus temperature growth phase diagram for lithium niobium oxides using molecular beam epitaxy at high substrate temperatures. Using this growth understanding, various multifunctional materials were epitaxially grown and characterized by structural, chemical, and morphological methods. The optical and electrical characteristics of Li1-xNbO2 were also investigated as a function of lithium stoichiometry. LiNbO2 samples were then fabricated into devices for use in neuromorphic computing, specifically memristors and batteries. Among other important studies, the use of Li-alloying contacts is explored as a method to induce non-volatile behavior in natively volatile LiNbO2 memristors, a feature critical for neuromorphic behavior. The findings suggest that LiNbO2 can exhibit memristive resistance changes in an analog manner which show tunable timescale ranges appropriate for biologically realistic synaptic behavior. The current and future state of memristors in neuromorphic computing is discussed, focusing on the role of volatile decay and short term effects in biological systems.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Oct 23, 2017 - 3:52pm
  • Last Updated: Oct 23, 2017 - 3:52pm