Population-Level Modeling of Cardiac Nonlinear Dynamics

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday October 18, 2017 - Thursday October 19, 2017
      3:00 pm - 3:59 pm
  • Location: Howey - School of Physics N110
  • Phone: 404-894-5203
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

shaun.ashley@physics.gatech.edu

Summaries

Summary Sentence: Population-Level Modeling of Cardiac Nonlinear Dynamics

Full Summary: No summary paragraph submitted.

School of Physics, Nonlinear Science & Mathematical Physics Seminar: Prof. Alain Karma, Northeastern University, Boston

The nonlinear dynamics of cardiac excitable waves is controlled by ion channels that are the basic molecular building blocks of the heart's electrical circuitry. Variations in gene expression and protein levels can cause the conductance of those channels to vary both between cells of the same heart and between hearts of different individuals in a genetically diverse population.

This talk will discuss the results of recent computational modeling and experimental studies aimed at identifying electrophysiological parameter sets that represent different individuals in a genetically diverse population and at distinguishing intra-heart cell-to-cell from inter-individual variability.

Our main finding is that feedback sensing of the intracellular calcium concentration suffices, remarkably, to constrain parameter sets so as to produce a normal electrophysiological phenotype without any constraint on the electrical signal due to compensation between different ionic currents. Furthermore, parameter sets can differ greatly such that different individuals may respond very differently to environmental stresses and drug therapies. The results have important implications for understanding cardiac homeostasis and developing personalized therapies. 

Additional Information

In Campus Calendar
Yes
Groups

Invited Audience
Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
physics
Status
  • Created By: Shaun Ashley
  • Workflow Status: Published
  • Created On: Oct 13, 2017 - 5:33pm
  • Last Updated: Oct 13, 2017 - 5:36pm