*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Atlanta, GA | Posted: April 24, 2017
Massive landslides, similar to those found on Earth, are occurring on the asteroid Ceres. That’s according to a new study led by the Georgia Institute of Technology, adding to the growing evidence that Ceres retains a significant amount of water ice.
The study is published in the journal Nature Geoscience. It used data from NASA’s Dawn spacecraft to identify three different types of landslides, or flow features, on the Texas-sized asteroid.
Type I are relatively round, large and have thick "toes" at their ends. They look similar to rock glaciers and icy landslides in Earth’s arctic. Type I landslides are mostly found at high latitudes, which is also where the most ice is thought to reside near Ceres' surface.
Type II features are the most common of Ceres’ landslides and look similar to deposits left by avalanches on Earth. They are thinner and longer than Type I and found at mid-latitudes. The authors affectionately call one such Type II landslide "Bart" because of its resemblance to the elongated head of Bart Simpson from TV's "The Simpsons."
Ceres' Type III features appear to form when some of the ice is melted during impact events. These landslides at low latitudes are always found coming from large-impact craters.
Georgia Tech Assistant Professor and Dawn Science Team Associate Britney Schmidt led the study. She believes it provides more proof that the asteroid’s shallow subsurface is a mixture of rock and ice.
“Landslides cover more area in the poles than at the equator, but most surface processes generally don’t care about latitude,” said Schmidt, a faculty member in the School of Earth and Atmospheric Sciences. “That’s one reason why we think it’s ice affecting the flow processes. There’s no other good way to explain why the poles have huge, thick landslides; mid-latitudes have a mixture of sheeted and thick landslides; and low latitudes have just a few.”
The study’s researchers were surprised at just how many landslides Ceres has in general. About 20 percent to 30 percent of craters greater than 6 miles (10 kilometers) wide have some type of landslide associated with them. Such widespread features formed by "ground ice" processes, made possible because of a mixture of rock and ice, have only been observed before on Earth and Mars.
Based on the shape and distribution of landslides on Ceres, the authors estimate that the upper layers of Ceres may range from 10 percent to 50 percent ice by volume.
“These landslides offer us the opportunity to understand what’s happening in the upper few kilometers of Ceres,” said Georgia Tech Ph.D. student Heather Chilton, a co-author on the paper. “That’s a sweet spot between information about the upper meter or so provided by the GRaND (Gamma Ray and Neutron Detector (GRaND) and VIR (Visible and Infrared Spectrometer) instrument data, and the tens of kilometers-deep structure elucidated by crater studies.”
"It’s just kind of fun that we see features on this small planet that remind us of those on the big planets, like Earth and Mars,” Schmidt said. “It seems more and more that Ceres is our innermost icy world.”
The Dawn mission is managed by NASA’s Jet Propulsion Laboratory for NASA's Science Mission Directorate in Washington, D.C. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: http://dawn.jpl.nasa.gov/mission.
Co-written by Elizabeth Landau, Jet Propulsion Lab
For More Information:
Biography:
Britney Schmidt
Dr. Britney Schmidt, Assistant Professor, received a BS in Physics from University of Arizona and Ph.D. in Geophysics and Space physics from UCLA. Her area of expertise is planetary ices and the early solar system. She is keenly interested in the habitability of icy worlds to search for life beyond Earth. A veteran of Antarctic fieldwork, she studies Earth’s ice shelves and glaciers to capture the impacts of changing climate and explore analogs for Europa. Britney played a central role in developing several mission concepts, including the recently selected Europa Multiple Flyby mission where she is Co-I on the REASON radar team. She is an associate of the Dawn Framing Camera team. She is PI of Sub-Ice Marine and Planetary Analog Ecosystems (SIMPLE), a $5M NASA program studying the McMurdo Ice Shelf using remote sensing and underwater vehicles. She leads the Georgia Tech built Icefin AUV for under ice