Statistics Series- Qiang Liu

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday September 14, 2017 - Friday September 15, 2017
      11:00 am - 11:59 am
  • Location: Groseclose 402
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Statistics Series- Qiang Liu

Full Summary: No summary paragraph submitted.

TITLE:  A Stein Variational Framework for Deep Probabilistic Modeling

ABSTRACT:

Modern AI and machine learning techniques increasingly depend on highly complex, hierarchical (deep) probabilistic models to reason with complex relations and learn to predict and act under uncertain environment. This, however, casts a significant demand for developing efficient computational methods for handling highly complex probabilistic models for which exact calculation is prohibitive. In this talk, we discuss a new framework for approximate learning and inference that combines ideas from Stein's method, an advantaged theoretical technique developed by mathematical statistician Charles Stein, with practical machine learning and statistical computation techniques such as variational inference, Monte Carlo, optimal transport and reproducing kernel Hilbert space (RKHS). Our framework provides a new foundation for probabilistic learning and reasoning and allows us to develop a host of new algorithms for a variety of challenging statistical tasks, that are significantly different from, and have critical advantages over, traditional methods. Examples of applications include computationally tractable goodness-of-fit tests for evaluating highly complex models, new efficient approximation inference methods for scalable Bayesian computation, amortized maximum likelihood training for deep generative models, and new policy gradient methods that yield better exploration using Bayesian uncertainty for deep reinforcement learning.

BIO: Qiang Liu is an assistant professor of computer science at Dartmouth College. His research interests are in machine learning, Bayesian inference, probabilistic graphical models and deep learning. He received his Ph.D from University of California at Irvine, followed with a postdoc at MIT CSAIL. He is an action editor of journal of machine learning research.

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
No categories were selected.
Keywords
No keywords were submitted.
Status
  • Created By: nhendricks6
  • Workflow Status: Published
  • Created On: Sep 5, 2017 - 8:36am
  • Last Updated: Sep 5, 2017 - 8:36am