*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Atlanta, GA | Posted: August 23, 2017
Seven students have joined the Interdisciplinary Ph.D. program in Quantitative Biosciences (QBioS). These students have backgrounds in physics, mathematics and biology and join the program from the United States, China, and India. Altogether, the QBioS Ph.D. program now includes 16 students, including nine members from the inaugural cohort who joined in Fall 2016. The QBioS Ph.D. is directed by Biological Sciences Professor Joshua S. Weitz.
The QBioS Ph.D. was established in 2015 and includes more than 50 program faculty. The mission of QBIoS is to educate students and advance research, enabling the discovery of scientific principles underlying the dynamics, structure, and function of living systems at scales from molecules to ecosystems. Of the seven incoming students, four are affiliated with the School of Biological Sciences and three are affiliated with the School of Physics.
Kelimar Diaz Cruz obtained a B.S. in Physics from the University of Puerto Rico, Rio Piedras Campus in Puerto Rico this year, before joining the QBioS Ph.D. “Before my undergrad, I had no idea there were many branches of Physics,” Diaz notes. “Once I learned Biophysics was one of them I immediately knew in what direction I wanted to head. The QBioS Ph.D. program will allow me to develop interdisciplinary and quantitative approaches for the understanding of biological systems. There is no better program that aligns with my interests. I am looking forward to expanding my knowledge of biological sciences as I work alongside faculty and researchers in different areas.”
Guanlin Li graduated with a B.S in Mathematics and Physics Minor in 2016 from Arizona State University and earned his M.S in Mathematics from Georgia Tech this year before transferring into QBioS. “I like to utilize mathematical and computational tools to answer fundamental questions raised in the biosciences,” Li says. “QBioS opens a new door that brings biosciences to a quantitative side, from experimental interpretations to equations and laws. I'm excited and looking forward to joining this new program.”
Daniel Muratore completed a Bachelor's in Biological Sciences at the University of Chicago in 2016, focusing primarily in theoretical ecology. After graduating, he worked in Maureen Coleman's lab at the University of Chicago on microbial ecology and biogeochemistry for marine and lake systems. Muratore moved from to Atlanta to work with Weitz on virus-host models and nutrient dynamics in marine ecosystems and to start his PhD in QBioS, explains, “I am very excited to use modeling approaches and robust analytical methods to handle a diversity of data coming from the worlds of oceanography, molecular biology, and bioinformatics for the purpose of generating new knowledge about the goings on of the marine microbial ecosystem.”
Brandon Pratt graduated from the University of Washington earlier this year, receiving Bachelor of Science degrees in neurobiology and in molecular, cellular, and developmental biology. He notes, “I was drawn to the PhD program in Quantitative Biosciences at Georgia Tech because of its unique design that bridges the gap between biosciences and engineering. Coming from a primarily biosciences background, this program allows me to expand my repertoire of technical skills and knowledge to include those from the fields of computer science and engineering. I aim to use these skills to better describe living systems, particularly neural systems.” Pratt intends to conduct research involving how sensory information is acquired, processed, and integrated in the nervous system.
Kai Tong earned his B.S. in Biological Sciences from Fudan University in Shanghai, China, this year. Initially admitted into the Ph.D. program in Biology, Tong decided to transfer to QBioS. “I was amazed by the easy-going and collaborative atmosphere here," Tong says. “And equally importantly, the fit with my research interests in major evolutionary transitions and social evolution.” He noted that his training as a ‘traditional’ biologist involved a leap to transfer to QBioS. “This out-of-comfort-zone effort will allow me not only to use more quantitative toolkits to tackle biological questions, but also to test hypotheses or perform predictions that usual experimental methodology may not be able to, as well formulate insights into a more abstract and generalizable way.”
Akash Vardhan received his training in Production Engineering from Jadavpur University, India, graduating in 2013. After completing his undergraduate education, he worked as a vehicle dynamics test engineer in the automobile industry, before moving on to study the mechanics of bug flight in Sanjay Sane’s lab at the National Centre for Biological Sciences in Bangalore, India. “As a part of the QBioS program I would love to continue working on the biomechanics and control of locomotion in a wide variety of animals,” Vardhan says. “Form and function is another area that I find really fascinating, how seemingly simple interactions can give rise to an emergent behavior which is really complex has also gotten me really interested.”
Mengshi Zhang received her B.S. in Biotechnology from South University of Science and Technology of China in 2015 and then switched to the Department of Physics at the Chinese University of Hong Kong for her master’s degree (MPhil), graduating earlier this year. She is fascinated by the quantitative descriptions of biological phenomena and drawn to this interface in QBioS. Zhang has backgrounds in system biology and synthetic biology, and experience in wet and dry labs. “I would like to combine both computational analysis and experimental methods and look forward to integrating principles of physical, mathematical and biological science together within QBioS,” she says.