*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
In partial fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Biology
in the
School of Biological Sciences
Cody Clements
will defend his thesis
Predation, competition, and facilitation on tropical reefs: implications for corals as reefs degrade
Wednesday, August 30, 2017
12:30 PM
Engineered Biosystems Building (EEB)
Children's Healthcare of Atlanta Seminar Room
Thesis Advisor
Dr. Mark Hay
School of Biological Sciences
Committee Members
Dr. Julia Kubanek (School of Biological Sciences & School of Chemistry and Biochemistry)
Dr. Todd Streelman (School of Biological Sciences)
Dr. Lin Jiang (School of Biological Sciences)
Dr. Emmett Duffy (Smithsonian Institution)
ABSTRACT
Tropical coral reefs are among the most diverse and productive ecosystems on Earth, but reefs worldwide have experienced dramatic declines in coral and often transitioned from coral- to macrolagal dominance. As local and global threats to corals increase in severity and frequency, there is an urgent need to understand how reef degradation, as well as efforts to manage and restore corals, are reshaping ecological interactions that are critical to the function of coral reef ecosystems. Here, I utilize a range of experimental approaches to investigate how interactions between corals, competing macroalgae, and coral predators (i.e. corallivores) are being altered within mosaics of coral reef habitat characterized by different levels of degradation and local protection in the tropical Pacific. I first demonstrate, via a series of field observations and experiments, the direct negative effects of competition for corals competing with macroalgae that commonly dominate degraded reefs, including the spatial and temporal constraints of these competitive interactions, as well as the indirect positive effects that can arise due to the presence of a common coral predator, the crown-of-thorns sea star (Acanthaster cf. planci). I also provide observational and experimental evidence that protected reefs can help alleviate predation by corallivorous snails (Coralliophila violacea) for some stress-tolerant corals (Porites cylindrica), but that stark habitat contrasts between coral-dominated protected reefs and macroalgal-dominated fished reefs can simultaneously attract and concentrate feeding by other corallivores (Acanthaster cf. planci) – potentially contributing to coral demise and compromising the conservation value of small Marine Protected Areas. Lastly, I use a field-based manipulative experiment to explore the implications of coral species loss for ecosystem function on degraded reefs; demonstrating that greater coral species richness can enhance coral growth and survivorship, and reduced colonization by competing macroalgae. Together, these studies highlight the need to better understand the novel and context-dependent role of ecological interactions – both for fundamental ecology and effective management – in rapidly changing ecosystems subject to increasing disturbances.