*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
COLLEGE OF SCIENCES
SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES
EAS Ph.D. Defense
Emily Saad
July 13, 2017
10:00 AM
Earth and Atmospheric Sciences
Ford Environmental Science & Technology (ES&T)311 Ferst Drive, ES&TAtlanta, GA 30332-0340Web: eas.gatech.edu
ES&T Room L1114
Title: Impact of biogeochemical processes on mineral weathering and transformation
Committee members: Dr. Yuanzhi Tang, Dr. Ellery Ingall, Dr. Martial Taillefert, Dr. Chris Reinhard, and Dr. Owen Duckworth (North Carolina State University)
Abstract: Determining how microorganisms directly and indirectly affect elemental speciation is critical for developing more predictive assessments of numerous biogeochemical cycles. This dissertation aims to constrain microbe-mineral interactions of two model systems, the weathering of chromium (Cr)-containing solids and the reverse weathering of silicon (Si)-containing solids (e.g. biogenic silica). The first model system, the bioweatheringof Cr-containing solids, was chosen due to the lack of information regarding redox-independent weathering of solid phase Cr by environmentally relevant organic molecules. In this study, microbiallymediated weathering of Cr-containing minerals was discovered to occur via both ligand complexation and increased solid solubility. This redox-independent process also introduced a range of Cr isotope signatures that were within the range of previously observed Cr isotope signatures in rock records linked to Cr redox cycling. The choice of the second model system, the reverse weathering of Si-containing solids, was motivated by current knowledge gaps regarding the global Si cycle. This dissertation presents characterization of the composition of organic matter produced by diatoms as well as the transformation of diatom-derived biogenic silica during early diagenesis. Nutrient regime was found to influence the amount and composition of dissolved organic matter produced by a model diatom species, which provides insights into the composition and bioavailability of dissolved organic matter under forecasted shifts to different nutrient regimes in certain ocean regions. Furthermore, the transformation of biogenic silica into aluminosilicatemineral phases was found to occur within a relatively short time frame and strongly controlled by the presence and concentration of aluminum and iron. Overall, the results of this dissertation demonstrate further advances in addressing current gaps regarding microbe-mineral interactions in the two model systems.