PhD Defense by Yuxuan Jiang

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday May 2, 2017 - Wednesday May 3, 2017
      9:00 am - 10:59 am
  • Location: Howey Physics, N-110 conference room
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Magneto-Infrared Spectroscopy of Emerging Topological Materials

Full Summary: No summary paragraph submitted.

Title:Magneto-Infrared Spectroscopy of Emerging Topological Materials

 

Time: Tuesday, May 2, 9:00am

 

Location: Howey Physics, N-110 conference room

 

Advisor: Zhigang Jiang

 

Abstract:

 

Topological insulators (TIs) have recently attracted much attentions due to their robust edge/surface states against disorders and external disturbance under the protection of symmetries. Such robust states hold great promise for application in spintronics and quantum computing. Therefore, intense explorations and characterizations of possible TIs have been carried out in the scientific community. In this thesis, we use magneto-infrared spectroscopy to study the electronic band structures of two TI candidates. The first candidate is InAs/GaSb double quantum wells. We showed that when its band structure crosses the boundary from the normal state to the inverted state, multiple absorption modes emerge. This normal-inverted state transition can be described semi-quantitatively with an eight-band k. p model. We further demonstrate that the transition is widely adjustable with the effects of strain, magnetic field and quantum well widths, which paves the way for band engineering of optimal InAs/GaSb structures for realizing novel topological states as well as for device applications.

 

Another candidate studied in this thesis is zirconium pentatelluride (ZrTe5). The transmission spectra measured at zero magnetic field is suggestive of a quasi-2D nature in bulk ZrTe5 similar to that in graphene. The Landau level transitions clearly follow a square-root magnetic field dependence, which is a signature of Dirac bands, only with a small energy gap of about 9.4 meV. A four-fold splitting in low lying interband transitions are resolved under high magnetic fields, while circular polarization resolved measurements help identify a significant contribution from electron-hole asymmetry. We employ a model based on the Bernevig-Hughes-Zhang effective Hamiltonian to determine the values of the Fermi velocity, Dirac mass (or gap), electron-hole asymmetry, and electron and hole g-factors in ZrTe5. Our results support the topological Dirac semimetal picture with a small energy gap.

 

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 19, 2017 - 11:06am
  • Last Updated: Apr 26, 2017 - 10:59am