Ph.D. Thesis Proposal: Giada Abate

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday March 27, 2017 - Tuesday March 28, 2017
      9:00 am - 10:59 am
  • Location: Weber Space Science and Technology Building (SST-II), Collaborative Visualization Environment (CoVE)
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: “Design Rules for the Application of Tubercles on the Leading Edge of a Wind Turbine Blade”

Full Summary: No summary paragraph submitted.

Ph.D. Thesis Proposal by

Giada Abate

(Advisor: Prof. Dimitri N. Mavris)

“Design Rules for the Application of Tubercles on the Leading Edge of a Wind Turbine Blade”

Monday, March 27, 2017 @ 9:00 A.M.

Weber Space Science and Technology Building (SST-II)
Collaborative Visualization Environment (CoVE)

Abstract:

Complicated environmental effects such as atmospheric turbulence, ground boundary layer, variation of free-stream wind direction and amplitude, affect wind turbine performance. Since the main goal of a wind turbine is the production of energy, the irregular nature of the wind is considered the main problem to obtain a constant power output. Variability in the power production happens under off-design conditions (e.g. high wind speed), when the blade can be partially or totally in stall; sinusoidal modifications (tubercles) of the wind turbine blade leading edge could be a solution to this problem. Previous research demonstrated that leading edge tubercles delay flow separation and improve the aerodynamic performance in the post-stall regime. The advantages of tubercle application were discovered studying the Humpback Whale swimming behavior; the great agility of this big animal in capturing preys is due to the presence of tubercles on the leading edge of its flippers. Multiple research tried to understand the physical phenomenon behind those leading edge bumps, comparing them to vortex generators: tubercles produce counter-rotating vortices, which delay the separation of the flow due to a re-energization of the boundary layer over the surface.

 

The proposed research wants to analyze the performance enhancements of the NREL Phase VI wind turbine blade with tubercles on the leading edge, and in particular, it wants to identify design rules for tubercle application such that best performance and highest power produced can be achieved.

Three-dimensional Computational Fluid Dynamics (CFD) simulations of the NREL Phase VI wind turbine blade with different tubercle configurations will be run to analyze the influence on the performance of amplitude and wavelength of tubercles and their location along the blade span. A data analysis strategy will be used to identify the design rules, and then an optimization process will be conducted to find the best tubercle configuration, which permits to achieve the highest performance in terms of annual energy production of the NREL Phase VI wind turbine.

Committee Members:

Prof. Dimitri N. Mavris (Advisor)
Prof. Brian German (AE)
Prof. Lakshmi Sankar (AE)   

 

Additional Information

In Campus Calendar
Yes
Groups

School of Aerospace Engineering

Invited Audience
Faculty/Staff, Public, Undergraduate students, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
aerospace engineering
Status
  • Created By: Margaret Ojala
  • Workflow Status: Published
  • Created On: Mar 20, 2017 - 1:44pm
  • Last Updated: Apr 13, 2017 - 5:12pm