Ph.D. Dissertation Defense - Song Hu

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday March 30, 2017 - Friday March 31, 2017
      10:00 am - 11:59 am
  • Location: Room 509, TSRB
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Silicon-based RF/mm-wave Power Amplifiers and Transmitters for Future Energy-efficient and Broadband Communication Systems

Full Summary: No summary paragraph submitted.

TitleSilicon-based RF/mm-wave Power Amplifiers and Transmitters for Future Energy-efficient and Broadband Communication Systems

Committee:

Dr. Hua Wang, ECE, Chair , Advisor

Dr. John Cressler, ECE

Dr. Maysam Ghovanloo, ECE

Dr. Gee-Kung Chang, ECE

Dr. Hao-Min Zhou, Math

Abstract:

Power amplifier (PA) often governs the energy efficiency of a wireless transceiver. Its linearity is also of paramount importance to ensure the signal fidelity. Moreover, its broadband operation is highly desired for high-speed wireless communication. However, integrating a PA in silicon entails challenges due to the PA’s nature of large-signal and highly dynamic operation. This research exploits the mixed-signal computation and novel on-chip electromagnetic networks to enable intelligent RF/millimeter-wave large-signal operation in silicon. This research demonstrates the introduced design methodologies by silicon implementations. In a multiband millimeter-wave PA in silicon, mixed-signal reconfiguration and a novel on-chip power combiner enable broadband operation for fifth-generation (5G) communication. In a digital Doherty PA in silicon, flexible and precise digital control optimizes in-field Doherty efficiency enhancement and enables robustness against antenna mismatch. In addition, this research demonstrates two hybrid PA efficiency enhancement techniques that leverage digital-intensive architectures in silicon. Mixed-signal linearization is introduced in these architectures to eliminate the trade-off between efficiency and linearity.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Mar 14, 2017 - 5:13pm
  • Last Updated: Mar 20, 2017 - 4:26pm