PhD Dissertation Defense for Farahnaz Soleimani

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday March 28, 2017 - Wednesday March 29, 2017
      10:00 am - 11:59 am
  • Location: Klaus Conference Room 1315
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Fragility of California Bridges - Development of Modification Factors

Full Summary: No summary paragraph submitted.

Advisors:

Dr. Reginald DesRoches (CEE) and Dr. Jamie Padgett (Rice University)

Committee Members:

Dr. Brani Vidakovic (ISYE), Dr. Barry Goodno (CEE), Dr. Iris Tien (CEE)

 

ABSTRACT

This research study concentrates on the effects of geometric irregularities on the seismic response and fragility analysis of bridges. The experiences of past earthquakes have affirmed that bridges with geometric irregularities or inconsistencies in configuration have a higher probability of damage than the regular, straight bridges. Although previous studies have explored the fragility analysis of different types of bridges, there is a lack of research that focuses on the effects of various types of geometric irregularities on the development of fragility curves. The current work aims to address this deficiency by focusing on the impacts of (i) skew angle, (ii) unbalanced stiffness of frames, and (iii) tall column bents on the seismic performance of concrete box-girder bridges in California. This research first identifies the analytical modeling considerations associated with the design and construction of bridges in California. In the next step, bridge plans are extensively reviewed to determine the appropriate distribution of parameters needed to set up the various bridge components required for finite element modeling. Following the analytical modeling of bridges, a sensitivity analysis is performed on different bridge attributes to classify all of the categories of bridges existing in California. This classification helps keep the number of simulations and computational efforts within a reasonable range. The impacts of each type of irregularity on the probabilistic seismic demand model and the fragility of bridges are investigated in the later phases of this project. Finally, implementing statistical techniques, the results are compared to the responses of bridges with regular configurations. This results in the development of modification factors that allow the fragility curves of regular bridges to be modified, taking irregularities into account. Eventually, the proposed modification factors for each type of irregularity are tested and finalized.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Jacquelyn Strickland
  • Workflow Status: Published
  • Created On: Mar 13, 2017 - 2:29pm
  • Last Updated: Mar 27, 2017 - 4:50pm