*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Efficient LLL-based Lattice Reduction for MIMO Detection: from Algorithms to Implementations
Committee:
Dr. Xiaoli Ma, ECE, Chair , Advisor
Dr. Gee-Kung Chang, ECE
Dr. Robert Baxley, GTRI
Dr. Geoffrey Li, ECE
Dr. Yao Xie, ISyE
Abstract:
Lenstra-Lenstra-Lovasz (LLL) algorithm has been adopted as a lattice reduction (LR) technique for multiple-input multiple-output (MIMO) systems in wireless communications to improve performance with low complexity. Recently, some enhanced LLL variants are proposed, such as greedy LLL algorithms with fast convergence and fixed-complexity LLL (fcLLL) algorithms with constant hardware run-time. However, the existing greedy LLL and fcLLL algorithms are still inefficient which do not fully exploit the inherent characteristics of LLL algorithms. In this dissertation, we present enhanced greedy LLL and fcLLL algorithms for LR-aided MIMO detectors, which deal with the aforementioned shortcomings in the existing greedy LLL and fcLLL algorithms. Furthermore, we implement the proposed enhanced fcLLL algorithm in hardware by two types of architectures for low complexity and high throughput, respectively. Both simulations and implementations show that the proposed algorithms and architectures exhibit much better performance than the state-of-the-art solutions.