*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
We present algorithms for performing sparse univariate polynomial interpolation with errors in the evaluations of the polynomial. Our interpolation algorithms use as a substep an algorithm that originally is by R. Prony from the French Revolution (Year III, 1795) for interpolating exponential sums and which is rediscovered to decode digital error correcting BCH codes over finite fields (1960). Since Prony's algorithm is quite simple, we will give a complete description, as an alternative for Lagrange/Newton interpolation for sparse polynomials. When very few errors in the evaluations are permitted, multiple sparse interpolants are possible over finite fields or the complex numbers, but not over the real numbers. The problem is then a simple example of list-decoding in the sense of Guruswami-Sudan. Finally, we present a connection to the Erdoes-Turan Conjecture (Szemeredi's Theorem). This is joint work with Clement Pernet, Univ. Grenoble.