*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Peter Borden
BME PhD Thesis Proposal Presentation
Date and Time:Thursday, March 2nd, 10-11am
Location: Emory Rollins Research Center 1052
Committee:
Garrett Stanley (advisor)
Dieter Jaeger
Robert Liu
Bilal Haider
Biyu He (NYU)
Title: The Impact of Thalamic State on Sensory Cortical Processing and Behavior
The thalamus is a central junction that processes both sensory afferent and motor efferent signals. Although many neurological disorders including Parkinson’s disease, Schizophrenia, and Central Pain are linked to thalamic dysfunction, basic information about thalamic processing is still unknown. Specifically, it is unclear how ongoing changes in membrane polarization (i.e. state) alter the transmission of information to and from cortical regions. Thalamic neurons have dynamic firing modes (i.e. tonic and burst) and receive tremendous amounts of neuromodulatory inputs that shape the encoding of sensory features. My project will develop novel techniques to measure entire cortical regions and use these tools determine the role of thalamic state on tactile processing and detectability of sensory inputs. Specifically, I utilize the novel genetically expressed voltage indicator ArcLight to measure voltage activity across cortical structures. I will record cortical ArcLight signals while simultaneously manipulating the ongoing thalamic activity using genetically expressed light sensitive protein channels (optogenetics). I will further combine these techniques to modulate thalamic state to control the evoked cortical response and behavioral performance of mice during a tactile detection task. It is critical that we understand how thalamic state alters information transmission to develop better treatment options for these complex neurological disorders.