*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Atlanta, GA | Posted: February 6, 2017
The Living Building at Georgia Tech has reached a major milestone, with the approval of the schematic design. Approved by Georgia Tech’s Planning and Design Commission in December, the schematic design essentially provides a working blueprint for what is anticipated to be the most environmentally advanced research and educational building ever constructed in the Southeast.
“The Living Building is moving into the design development stage where the building and its immediate surroundings really start to take shape based upon the program goals, Living Building Challenge certification requirements, and the project’s budget,” said Howard Wertheimer, assistant vice president for Capital Planning and Space Management. “It has been a collaborative and rather intense analytical process to get to this celebratory stage of the project.”
Since spring of 2016, a team of architects, engineers, landscape architects, cost estimators, and other professionals, have been hard at work analyzing mechanical systems and carefully weighing the tradeoffs to strike the ideal balance between form, function, and cost for this unique building.
“We look for solutions that can serve the needs of the building and its occupants with minimum resources required to operate it,” said Joshua Gassman, lead project manager for Lord Aeck Sargent. “For instance, the schematic design proposes automated venetian blinds on the east façade of the building, which will reduce heat gain by shading when its needed and opening up to provide daylight when needed — all with minimal energy requirements from the building’s photovoltaic panels.”
Other win-win plans that received the green light include:
Programmatically, the schematic design promotes flexible space with purpose. Plans include an auditorium that seats 170 people for educational purposes and events. The building will also feature two 75-person classrooms and an open collaboration area — complete with makerspace — adjacent to the the soon-to-be developed Eco-Commons. While the upper rooftop will contain a 260 kW (approximately) photovoltaic array to harness the sun’s energy, a lower occupiable roof will feature a rooftop garden complete with honeybee apiary and pollinator garden.
One of the main objectives in creating a Living Building Challenge certified building is to help transform the industry by challenging the status quo and applying lessons to other projects. Even at the beginning design stages, the Living Building at Georgia Tech is proving to be an educational platform for all involved.
One of the lessons learned so far is that early and frequent collaboration with system engineers is a key ingredient for success.
“You have to know how the building must perform, and design to that. So involving the [system] engineers is vital on a project with very specific and stringent performance requirements,” stated Gassman. “This technical expertise must be integrated from the very beginning of the design process, not toward the end, which is often the case in traditional construction projects.”
Another guiding principle is that simplicity rules even when employing the best available technologies. Choosing materials, mapping out the interior structure, and understanding how to best leverage sunlight are examples of incorporating basic design principles that are effective and can be easily repeated on other projects.
“Our aspiration is that the systems being employed on this project, and the mechanical solutions in particular, will serve as an example to be replicated by others in high humidity climates,” said Greg Spiro, senior mechanical engineer with Facilities Management’s Design and Construction team. “This project has the potential to fundamentally change the way we think about heating and cooling buildings.”
Lastly, form can co-exist with function. According to Wertheimer, it used to be an either-or decision. But the careful analysis performed leading up to the schematic design of the Living Building at Georgia Tech has shown that you can create a fully functional, high performance building that is aesthetically pleasing and meets all of the programmatic requirements.
For more on the Living Building at Georgia Tech, including updates on the design development, visit livingbuilding.gatech.edu.