*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
TITLE: Projection Test for High-Dimensional Mean Vectors with Optimal Direction
ABSTRACT:
Testing the population mean is fundamental in statistical inference. When the dimensionality of a population is high, traditional Hotelling's T2 test becomes practically infeasible. In this paper, we propose a new testing method for high-dimensional mean vectors. The new method projects the original sample to a lower-dimensional space and carries out a test with the projected sample. We derive the theoretical optimal direction with which the projection test possesses the best power under alternatives. We further propose an estimation procedure for the optimal direction, so that the resulting test is an exact $t$-test under the normality assumption and an asymptotic chi-square test with 1 degree of freedom without the normality assumption. Monte Carlo simulation studies show that the new test can be much more powerful than the existing methods, while it also well retains Type I error rate.